143A1

B

Register No.: Name SAINTGITS COLLEGE OF ENGINEERING KOTTAYAM, KERALA (AN AUTONOMOUS COLLEGE AFFILIATED TO

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIRST SEMESTER INTEGRATED M.C.A DEGREE EXAMINATION(S), JULY 2021

Course Code: 20IMCAT103

Course Name: BASIC MATHEMATICS

Max. Marks: 60 **3 Hours**

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Prove the De Morgan's Law $\overline{A} \cap \overline{B} = \overline{A \cup B}$
- What is the Cartesian product $A \times B \times C$, where $A = \{0, 1\}, B = \{1, 2\}$, and C =2 $\{0, 1, 2\}$
- 3. Let $R = \{(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)\}$ be relation on $A = \{1, 2, 3, 4\}$. Determine whether the relation R is irreflexive, antisymmetric, transitive.
- 4. Define a partially ordered set and give an example
- 5. Distinguish between relation and function
- Let f(x) = x 1 and $g(x) = 4x^2 + 2$ be functions defined on set of real numbers \mathbb{R} . 6. Examine whether fog = gof.
- Find f'(5) if $f(x) = \frac{5}{x} \frac{x}{5}$ 7.
- 8. Find the second derivative of $y(x) = e^x sinx$
- 9. If $\int_{a}^{a} 3x^{2} dx = 8$ find the value a.
- Evaluate the integral $\int \left(\frac{e^{\sqrt{x}}}{\sqrt{x}}\right) dx$ 10.

PART B

(Answer one full question from each module, each question carries 6 marks)

MODULE I

11. If $A = \{3,4,7,8\}$ $B = \{1,2,4,8\}$ and $C = \{1,2,3,5,7\}$ verify $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (6)

OR

12. Among 18 students in a room, 7 study mathematics, 10 study science, and 10 study (6)computer programming. Also, 3 study mathematics and science, 4 study mathematics and computer programming, and 5 study science and computer programming. We know that 1 student studies all three subjects. Evaluate the number of student's study none of the three subjects.

Total Pages

2

Duration:

143A1

MODULE II

- $\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$ Evaluate the following
 - (a) the relation R

 - (b) the digraph of R
 - (c) the relation R^2

OR

14. Define an equivalence relation. Prove that for every $x, y \in \mathbb{Z}$, the relation defined by $\mathcal{R} =$ (6) $\{(x, y): 3 \text{ divids } x - y\}$ is an equivalence relation.

MODULE III

- 15. Give an example of function which is
 - (a) one one, not onto
 - (b) not one one, onto
 - (c) both one one and onto
 - (d) neither one one nor onto

OR

Check whether the function $f: \mathbb{R} \to \mathbb{R}$ defined as f(x) = 4x + 3 for all $x \in \mathbb{R}$ is invertible. 16. (6) If yes find the inverse function.

MODULE IV

- Find $\frac{d}{dx}(x^2 x + 2)^{3/4}$ 17. a)
 - Differentiate $(x^2 + 7)(3x^2 5)$ using product rule b) (3)

OR

18. Differentiate $y(x) = \frac{x^2 - 1}{x^2 + 1}$ (3)a)

b) If
$$y = 2sinx + 3cosx$$
 prove that $\frac{d^2y}{dx^2} + y = 0$ (3)

MODULE V

19. a) Evaluate the integral
$$\int_0^3 f(x)dx$$
 where $f(x) = \begin{cases} x^2, x < 2\\ 3x - 2, x \ge 0 \end{cases}$ (3)
b) Integrate $\left(\frac{3x^3 + 6x - 8}{3x} \right) dx$ (3)

b) Integrate
$$\int \left(\frac{3x^3+6x-8}{x}\right) dx$$

OR

Evaluate $\int x^2 e^{-x} dx$ 20.

Page 2 of 2

(3)

(6)

(6)