SAINTGITS COLLEGE OF ENGINEERING KOTTAYAM, KERALA

Course Code: 20IMCAT103

Course Name: BASIC MATHEMATICS

3 Hours

PART A
(Answer all questions. Each question carries 3 marks)

1. Prove the De Morgan's Law $\bar{A} \cap \bar{B}=\overline{A \cup B}$
2. What is the Cartesian product $A \times B \times C$, where $A=\{0,1\}, B=\{1,2\}$, and $C=$ $\{0,1,2\}$
3. Let $R=\{(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\}$ be relation on $A=\{1,2,3,4\}$. Determine whether the relation R is irreflexive, antisymmetric, transitive.
4. Define a partially ordered set and give an example
5. Distinguish between relation and function
6. Let $f(x)=x-1$ and $g(x)=4 x^{2}+2$ be functions defined on set of real numbers \mathbb{R}. Examine whether $f o g=g o f$.
7. Find $f^{\prime}(5)$ if $f(x)=\frac{5}{x}-\frac{x}{5}$
8. Find the second derivative of $y(x)=e^{x} \sin x$
9. If $\int_{o}^{a} 3 x^{2} d x=8$ find the value a.
10. Evaluate the integral $\int\left(\frac{e^{\sqrt{x}}}{\sqrt{x}}\right) d x$

PART B
 (Answer one full question from each module, each question carries 6 marks)

MODULE I

11. If $A=\{3,4,7,8\} B=\{1,2,4,8\}$ and $C=\{1,2,3,5,7\}$ verify $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

OR

12. Among 18 students in a room, 7 study mathematics, 10 study science, and 10 study computer programming. Also, 3 study mathematics and science, 4 study mathematics and computer programming, and 5 study science and computer programming. We know that 1 student studies all three subjects. Evaluate the number of student's study none of the three subjects.

143A1

MODULE II

13. Let R be a relation on $\mathrm{A}=\{1,2,3,4\}$. Given its associated relation matrix
(a) the relation R
(b) the digraph of R
(c) the relation R^{2}

OR

14. Define an equivalence relation. Prove that for every $x, y \in \mathbb{Z}$, the relation defined by $\mathcal{R}=$ $\{(x, y): 3$ divids $x-y\}$ is an equivalence relation.

MODULE III

15. Give an example of function which is
(a) one - one, not onto
(b) not one - one, onto
(c) both one - one and onto
(d) neither one - one nor onto

OR

16. Check whether the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as $f(x)=4 x+3$ for all $x \in \mathbb{R}$ is invertible. If yes find the inverse function.

MODULE IV

17. a) Find $\frac{d}{d x}\left(x^{2}-x+2\right)^{3 / 4}$
b) Differentiate $\left(x^{2}+7\right)\left(3 x^{2}-5\right)$ using product rule

OR

18. a) Differentiate $y(x)=\frac{x^{2}-1}{x^{2}+1}$
b) If $y=2 \sin x+3 \cos x$ prove that $\frac{d^{2} y}{d x^{2}}+y=0$

MODULE V

19. a) Evaluate the integral $\int_{0}^{3} f(x) d x$ where $f(x)=\left\{\begin{array}{rr}x^{2}, & x<2 \\ 3 x-2, & x \geq 0\end{array}\right.$
b) Integrate $\int\left(\frac{3 x^{3}+6 x-8}{x}\right) d x$

OR

20. Evaluate $\int x^{2} e^{-x} d x$
