Α		Total Pages	2
Register No:	 Name:		

SAINTGITS COLLEGE OF ENGINEERING KOTTAYAM, KERALA

(AN AUTONOMOUS COLLEGE AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIRST SEMESTER M.TECH. DEGREE EXAMINATION(S), JULY 2021 GEOMECHANICS AND STRUCTURES

- Course Code: 20CEGST101
- Course Name: APPLIED MATHEMATICS FOR CIVIL ENGINEERS
- Max. Marks: 60

Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Write the generating function for $P_n(x)$ and show that $P_n(1) = 1$.
- 2. Find the Laplace transform of f(t) = tcost.
- 3. Prove that Kronecker delta is a second order mixed tensor.
- 4. Form the differential equation corresponding to the integral equation $y(x) = \int_0^x t(t-x)y(t)dt + \frac{1}{2}x^2.$
- 5. Find the deflection of a vibrating string of unit length having fixed ends with initial velocity zero and initial deflection $2x^2 x^3$, using D'Alemberts formula.
- 6. Solve $q(q^2 + s) = pt$ by Monge's method.
- 7. What is the convergent criteria in Gauss Seidal iterative method?
- 8. Estimate the value of the integral $\int_0^6 \frac{1}{1+x^2} dx$ using two-point rule.

PART B

(Answer one full question from each module, each question carries 6 marks)

MODULE I

9. Prove that
$$\int_{-1}^{1} x^2 P_{n+1}(x) P_{n-1}(x) dx = \frac{2n(n+1)}{(2n-1)(2n+1)(2n+3)}$$
 (6)

OR

10. Show that
$$\frac{d}{dx} [xJ_n(x)J_{n+1}(x)] = x [J_n^2(x) - J_{n+1}^2(x)].$$
 (6)

MODULE II

11. Solve the boundary value problem $\frac{d^2y}{dt^2} + 9y = \cos 2t$ with $y(0) = 1, y\left(\frac{\pi}{2}\right) = -1$ (6) using Laplace transform.

OR

12. Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2, |x| \le 1\\ 0, |x| > 1 \end{cases}$. Hence evaluate (6) $\int_0^\infty \frac{x\cos x - \sin x}{x^3} \cos \frac{x}{2} dx.$

MODULE III

13. If a covariant tensor has components x + y, xz, $2z - y^2$ in cartesian co- (6) ordinate system, then find its components in cylindrical co-ordinates.

OR

14. Show that the velocity of a fluid at any point is a contravariant tensor of (6) rank 1.

MODULE IV

15. Convert the differential equation y'' + y = 0 with the initial conditions (6) y(0) = 0, y'(0) = 0 into an integral equation.

OR

16. Find the solution of the integral equation $Y(x) = sinx + \lambda \int_0^{2\pi} cos(x+t)Y(t)dt$ (6) by iterative method.

MODULE V

17. A tightly stretched string with fixed end points x = 0 and x = l is initially at (6) rest in its equilibrium position. At t = 0, the string is given a shape defined by F(x) = μx(l-x), where μ is a constant, and then released. Find the displacement of the string at any distance x from one end at any time t.

OR

18. Solve the Laplace equation
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
 subject to the following conditions: (6)
 $u(0,y) = u(l,y) = u(x,0) = 0$ and $u(x,a) = \sin \frac{n\pi x}{l}$.

MODULE VI

19. Apply factorization method to solve the system of equations (6) 3x + 2y + 7z = 4; 2x + 3y + z = 5; 3x + 4y + z = 7

OR

20. Solve the partial differential equation $\Delta^2 u = -10(x^2 + y^2 + 10)$ over the square (6) with sides x = 0 = y, x = 3 = y with u = 0 on the boundary and mesh length 1 unit.
