186A3

A

SAINTGITS COLLEGE OF ENGINEERING KOTTAYAM, KERALA
 (AN AUTONOMOUS COLLEGE AFFILIATED TO
 APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIRST SEMESTER M.TECH. DEGREE EXAMINATION(S), JULY 2021 GEOMECHANICS AND STRUCTURES

Course Code: 20CEGST101

Course Name: APPLIED MATHEMATICS FOR CIVIL ENGINEERS

Max. Marks: 60
Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

1. Write the generating function for $P_{n}(x)$ and show that $P_{n}(1)=1$.
2. Find the Laplace transform of $f(t)=$ tcost.
3. Prove that Kronecker delta is a second order mixed tensor.
4. Form the differential equation corresponding to the integral equation

$$
y(x)=\int_{0}^{x} t(t-x) y(t) d t+\frac{1}{2} x^{2} .
$$

5. Find the deflection of a vibrating string of unit length having fixed ends with initial velocity zero and initial deflection $2 x^{2}-x^{3}$, using D'Alemberts formula.
6. Solve $q\left(q^{2}+s\right)=p t$ by Monge's method.
7. What is the convergent criteria in Gauss Seidal iterative method?
8. Estimate the value of the integral $\int_{0}^{6} \frac{1}{1+x^{2}} d x$ using two-point rule.

PART B

(Answer one full question from each module, each question carries $\mathbf{6}$ marks)

MODULE I

9. Prove that $\int_{-1}^{1} x^{2} P_{n+1}(x) P_{n-1}(x) d x=\frac{2 n(n+1)}{(2 n-1)(2 n+1)(2 n+3)}$.

OR

10. Show that $\frac{d}{d x}\left[x J_{n}(x) J_{n+1}(x)\right]=x\left[J_{n}^{2}(x)-J_{n+1}^{2}(x)\right]$.

MODULE II

11. Solve the boundary value problem $\frac{d^{2} y}{d t^{2}}+9 y=\cos 2 t$ with $y(0)=1, y\left(\frac{\pi}{2}\right)=-1$ using Laplace transform.

186A3

OR

12. Find the Fourier transform of $f(x)=\left\{\begin{array}{ll}1-x^{2},|x| \leq 1 \\ 0 & ,|x|>1\end{array}\right.$. Hence evaluate $\int_{0}^{\cos \frac{x \cos x-\sin x}{x^{8}}} \cos \frac{x}{2} d x$.

MODULE III

13. If a covariant tensor has components $x+y, x z, 2 z-y^{2}$ in cartesian coordinate system, then find its components in cylindrical co-ordinates.

OR

14. Show that the velocity of a fluid at any point is a contravariant tensor of rank 1.

MODULE IV

15. Convert the differential equation $y^{\prime \prime}+y=0$ with the initial conditions $y(0)=0, y^{\prime}(0)=0$ into an integral equation.

OR

16. Find the solution of the integral equation $Y(x)=\sin x+\lambda \int_{0}^{2 \pi} \cos (x+t) Y(t) d t$ by iterative method.

MODULE V

17. A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially at rest in its equilibrium position. At $t=0$, the string is given a shape defined by $F(x)=\mu x(l-x)$, where μ is a constant, and then released. Find the displacement of the string at any distance x from one end at any time t.

OR

18. Solve the Laplace equation $\frac{\partial^{z} u}{\partial x^{2}}+\frac{\partial^{z} u}{\partial y^{2}}=0$ subject to the following conditions:

$$
\begin{equation*}
u(0, y)=u(l, y)=u(x, 0)=0 \text { and } u(x, a)=\sin \frac{n \pi x}{l} \tag{6}
\end{equation*}
$$

MODULE VI

19. Apply factorization method to solve the system of equations
$3 x+2 y+7 z=4 ; 2 x+3 y+z=5 ; 3 x+4 y+z=7$

OR

20. Solve the partial differential equation $\Delta^{2} u=-10\left(x^{2}+y^{2}+10\right)$ over the square with sides $x=0=y, x=3=y$ with $u=0$ on the boundary and mesh length 1 unit.
