Register No.: Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM) SECOND SEMESTER INTEGRATED M.C.A DEGREE EXAMINATION (S), December 2021

Course Code: 20IMCAT104

Course Name: INTRODUCTION TO DISCRETE MATHEMATICS

Max. Marks: 60

Duration: 3 Hours

CO

PART A

(Answer all questions. Each question carries 3 marks)

1.	Using truth table show that $p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p)$.	[1]
2.	Over the universe of animals, let $A(x)$: x is a whale, $B(x)$: x is a fish and $C(x)$: x lives in water. Express the following statements using quantifiers.	[1]
	(a) There exists an animal which doesnot live in water.(b) There exists a fish that is not a whale.(c) Every whale that lives in the water is a fish.	
3.	Using the principle of mathematical induction prove that	[2]
	$P(n): 1+3+5++(2n-1) = n^2$	
4.	State Pigeonhole Principle .Write an example.	[2]
5.	Find GCD and LCM of the numbers 120 and 500.	[3]
6.	State Chinese Remainder Theorem.	[3]
7.	Define Complete graph and Bipartite graph. Give example for each.	[4]
8.	Define Euler path and Euler circuit. Give example for each.	[4]
9.	Write the value of the expression + 4 / * 2 3 + 1 – 9 \uparrow 2 3	[5]
10.	Define a rooted tree. Draw an example.	[5]

PART B

(Answer one question from each module, each question carries 6 marks)

MODULE I

		CO	Marks
11.	Show that the following statement is a contingency		
	$(p \Rightarrow (q \land r)) \Rightarrow \sim (p \Rightarrow q)$	[1]	(6)

В

269A2

Β

	UR UR					
10		СО	Marks			
12.	Given the following open statements.					
	p(x): x > 0, $q(x): x is odd$, $r(x): x is a perfect square$,					
	s(x): x is divisible by 3, $t(x)$: x is divisible by 2					
	Write the following statements in symbolic form					
	 i. Atleast one integer is odd ii. There exists a positive integer that is odd iii. If x is odd , then x is not divisible by 2 iv. No odd integer is divisible by 2 v. There exists an odd integer divisible by 2 vi. If x is odd and x is perfect square , then x is divisible by 3 	[1]	(6)			
	MODULE II					
		СО	Marks			
13.	If <i>n</i> th term of arithmetic progression is $a + (n - 1)d$, then show by the principle of mathematical induction that the sum of <i>n</i> terms of arithmetic progression is $\frac{n}{2}\{2a + (n - 1)d\}$.	[2]	(6)			
	OR					
14	1 1 1		Marks			
14.	Use the principle of mathematical induction to prove that $\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} + \cdots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}$, $n \in \mathbb{N}$	[2]	(6)			
	MODULE III					
		СО	Marks			
15.	Solve the following simultaneous congruences	[3]	(6)			
	$x \equiv 2 \pmod{3}$, $x \equiv 4 \pmod{7}$, $x \equiv 6 \pmod{10}$	[5]	(0)			
OR						
		СО	Marks			
16.	Find gcd of 427 and 616. Express it in the form $427x + 616y$	[3]	(6)			
MODULE IV						
17.	Check whether the graphs shown below are isomorphic. Give reasons for your answer.		Marks			
			(6)			

269A2

Total Pages: 3

Β

OR

Apply Dijkstra's algorithm to the graph given below and find the shortest path from a to f

MODULE V

со Marks 19. Apply Kruskal's algorithm to find the minimal spanning tree of the following graph q [5] (6) 6 C 10 d 11 14 f g OR CO Marks 20. Find the preorder, inorder and postorder searches of the binary tree shown in the figure below

[5] (6)

