# SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS) <br> (AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM) <br> SECOND SEMESTER B.TECH DEGREE EXAMINATION (Supplementary), December 2021 

## Course Code: 20MAT102

Course Name: Vector Calculus, Differential Equations and Transforms
Max. Marks:
100
Duration: 3 Hours

## PART A <br> (Answer all questions. Each question carries 3 marks)

1. What is the greatest rate of increase of $\phi(x, y, z)=x^{2} z-3 x y^{2} z^{3}$ at $(0,1,3)$.
2. A particle moves through 3 - space in such a way that its velocity is $\vec{v}(t)=\hat{\imath}+t \hat{\jmath}+t^{2} \hat{k}$. Find the coordinates of the particle at time $t=1$, given that the particle is at the point $(-1,2,4)$ at the time $t=0$.
3. Apply Green's theorem to evaluate $\int_{c}\left(y^{2}-7 y\right) d x+(2 x y+2 x) d y$ where $C$ is the circle $x^{2}+y^{2}=1$.
4. Determine whether the vector field $\vec{F}(x, y, z)=\left(x^{3}-x\right) \hat{\imath}+\left(y^{3}-y\right) \hat{\jmath}+\left(z^{3}-z\right) \hat{k}$ is free of sources and sinks. If it is not, locate them.
5. Check whether $e^{-0.5 x}, e^{-2.5 x}$ are linearly dependent or independent using Wronskian.
6. Given $y_{1}=x^{2}$ is the solution of $x^{2} y^{\prime \prime}+x y^{\prime}-4 \mathrm{y}=0$, find the second solution by reduction of order.
7. Find the Laplace transform of $\cos ^{2} \omega t$.
8. Show that $u(t-a)=\int_{0}^{t} \delta(t-a) d t$
9. Find Fourier cosine integral representing of $f(x)=\left\{\begin{array}{rr}1 & 0<x<1 \\ 0 & x>1\end{array}\right.$
10. Find the Fourier sine transform of $e^{-a x}, \quad a>0$.

## PART B <br> (Answer one full question from each module, each question carries 14 marks) <br> MODULE I

11. a) | Find the divergence and the curl of the vector field | CO |
| :--- | :--- |
| $\vec{F}(x, y, z)=e^{x y} \hat{\imath}-2 \cos y \hat{\jmath}+\sin ^{2} z \hat{k}$. | Marks |
| b) | Evaluate $\int_{c} \vec{F} \cdot d \vec{r}$, where C is the path $x=t, y=t^{2}, z=t^{3}$ from $(0,0,0)$ to |
| $(1,1,1)$ and $\vec{F}=\left(3 x^{2}+6 y\right) \hat{\imath}-14 y z \hat{\jmath}-\vdash 20 x z^{2} \hat{k}$. |  |$\quad[1] \quad$ (6)

## OR

## CO Marks

12. a) Determine whether $\vec{F}=\left(2 x y+z^{3}\right) \hat{\imath}+x^{2} \hat{\jmath}+3 x z^{2} \hat{k}$ is conservative vector field. If so, find the scalar potential. Hence evaluate the work done in moving an object in this field from $(1,-2,1)$ to $(3,1,4)$.
b) Find the directional derivative of $f(x, y, z)=\frac{y}{x+z}$ at $P(2,1,-1)$ in the direction from $P$ to $Q(-1,2,0)$.

## MODULE II

## CO <br> Marks

13. a) Evaluate $\iint_{\sigma}(x+y) d S$, where $\sigma$ is the portion of the plane $z=6-2 x-4 y$ in the first octant.
b) Find the outward flux of the vector field
$\vec{F}=(2 x-y) \hat{\imath}+(2 y-z) \hat{\jmath}+z^{2} \hat{k}$ across the surface of the region that is
[2] enclosed by the circular cylinder $x^{2}+y^{2}=4$ and the plane $\mathrm{z}=0$ and $\mathrm{z}=3$.

## OR

a) Apply Stokes theorem to evaluate the integral $\int_{c} \vec{F} \cdot d \vec{r}$ where
$\vec{F}=3 z \hat{\imath}+4 x \hat{\jmath}+2 y \hat{k}$ and $C$ is the boundary of the paraboloid $x^{2}+y^{2}+z=4$ for which $z \geq 0$ and $C$ is positively oriented.
b) Use Green's theorem to evaluate $\oint_{c}\left(e^{x}+y^{2}\right) d x+\left(e^{y}+x^{2}\right) d y$ where $C$ is the boundary of the region between $y=x^{2}$ and $y=2 x$.

## MODULE III

15. a) Using the method of variation of parameter solve the differential equation $\left(D^{2}-2 D+5\right) y=e^{x} \tan 2 x$.
b) Solve $\left(D^{3}+3 D^{2}-5 D-39 I\right) y=-300 \cos x$.

OR
16. a) Solve $\left(D^{2}-4 D+3 I\right) y=e^{x}-\frac{9}{2} x^{2}$.

## CO Marks

b) Solve the initial value problem

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0 y(1)=\pi, y^{\prime}(1)=4 \pi \tag{3}
\end{equation*}
$$

## MODULE IV

17. a) Using Laplace transform, solve the differential equation $y^{\prime \prime}+9 y=10 e^{-t}, y(0)=0, y^{\prime}(0)=0$.
b) Find $L\left(t e^{-t} \cos t\right)$.
18. a) Apply convolution theorem to find the Laplace inverse transform

$$
\begin{equation*}
\text { of } \frac{240}{\left(s^{2}+1\right)\left(s^{2}+25\right)} . \tag{8}
\end{equation*}
$$

b) Determine the response of the damped mass- spring system under a square wave, modeled by
[4]

$$
\begin{equation*}
y^{\prime \prime}+3 y^{\prime}+2 y=r(t)=u(t-1)-u(t-2), y(0)=0, y^{\prime}(0)=0 \tag{6}
\end{equation*}
$$

## MODULE V

## CO Marks

19. a) Show that $\int_{0}^{\infty} \frac{\sin \omega-\omega \cos \omega}{\omega^{2}} \sin x \omega d x\left\{\begin{array}{cc}\frac{\pi}{2} x & 0<x<1 \\ \frac{\pi}{4} & x=1 \\ 0 & x>1\end{array}\right.$.
[5]
b) Find the Fourier transform of $f(x)=\left\{\begin{array}{cc}x & -1<x<1 \\ 0 & \text { otherwise }\end{array}\right.$.

## OR

## CO Marks

20. a) Find the Fourier transform of $f(x)=\left\{\begin{array}{ll}1 & |x|<1 \\ 0 & |x|>1\end{array}\right.$.

Hence evaluate $\int_{0}^{\infty} \frac{\sin t}{t} d t$.
b) Compute the Fourier transform of convolution of the functions

$$
\begin{equation*}
f(x)=g(x)=e^{-x^{2}} . \tag{5}
\end{equation*}
$$

