Register No.: Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM) SECOND SEMESTER B.TECH DEGREE EXAMINATION (Supplementary), December 2021

.....

Course Code: 20MAT102

Course Name: Vector Calculus, Differential Equations and Transforms

201A4

Max. Marks: 100

Α

PART A

(Answer all questions. Each question carries 3 marks)

1.	What is the greatest rate of increase of $\phi(x, y, z) = x^2 z - 3xy^2 z^3$ at (0,1,3).	[1]
2.	A particle moves through 3- space in such a way that its velocity is $\vec{v}(t) = \hat{\iota} + t\hat{J} + t^2\hat{k}$.	
	Find the coordinates of the particle at time $t = 1$, given that the particle is at the point $(-1,2,4)$ at the time $t = 0$.	[1]
3.	Apply Green's theorem to evaluate $\int_{C} (y^2 - 7y) dx + (2xy + 2x) dy$ where <i>C</i> is the circle $x^2 + y^2 = 1$.	[2]
4.	Determine whether the vector field $\vec{F}(x, y, z) = (x^3 - x)\hat{i} + (y^3 - y)\hat{j} + (z^3 - z)\hat{k}$ is free of sources and sinks. If it is not, locate them.	[2]
5.	Check whether $e^{-0.5x}$, $e^{-2.5x}$ are linearly dependent or independent using Wronskian.	[3]
6.	Given $y_1 = x^2$ is the solution of $x^2y'' + xy' - 4y = 0$, find the second solution by reduction of order.	[3]
7.	Find the Laplace transform of $\cos^2 \omega t$.	[4]
8.	Show that $u(t-a) = \int_0^t \delta(t-a) dt$	[4]
9.	Find Fourier cosine integral representing of $f(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & x > 1 \end{cases}$	[5]
10.	Find the Fourier sine transform of e^{-ax} , $a > 0$.	[5]

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

			CO	Marks
11.	a)	Find the divergence and the curl of the vector field $\vec{F}(x, y, z) = e^{xy}\hat{\iota} - 2\cos y\hat{\jmath} + \sin^2 z\hat{k}.$	[1]	(8)
	b)	Evaluate $\int_{c} \vec{F} \cdot d\vec{r}$, where C is the path $x = t, y = t^{2}, z = t^{3}$ from (0,0,0) to (1,1,1) and $\vec{F} = (3x^{2} + 6y)\hat{i} - 14yz\hat{j} - \vdash 20xz^{2}\hat{k}$.	[1]	(6)

Duration: 3 Hours

со

201A4

Α

Total Pages: 3

OR

			СО	Marks			
12.	a)	Determine whether $\vec{F} = (2xy + z^3)\hat{i} + x^2\hat{j} + 3xz^2\hat{k}$ is conservative vector field. If so, find the scalar potential. Hence evaluate the work done in moving an object in this field from $(1, -2, 1)$ to $(3, 1, 4)$.	[1]	(8)			
	b)	Find the directional derivative of $f(x, y, z) = \frac{y}{x+z}$ at $P(2, 1, -1)$ in the direction from <i>P</i> to $Q(-1, 2, 0)$.	[1]	(6)			
	MODULE II						
			СО	Marks			
13.	a)	Evaluate $\iint_{\sigma} (x + y) dS$, where σ is the portion of the plane $z = 6 - 2x - 4y$ in the first octant.	[2]	(8)			
	b)	Find the outward flux of the vector field $\vec{F} = (2x - y)\hat{i} + (2y - z)\hat{j} + z^2\hat{k}$ across the surface of the region that is enclosed by the circular cylinder $x^2 + y^2 = 4$ and the plane $z = 0$ and $z = 3$.	[2]	(6)			
	OR						
			CO	Marks			
14.	a)	Apply Stokes theorem to evaluate the integral $\int_c \vec{F} \cdot d\vec{r}$ where					
		$\vec{F} = 3z\hat{\imath} + 4x\hat{\jmath} + 2y\hat{k}$ and <i>C</i> is the boundary of the paraboloid $x^2 + y^2 + z = 4$ for which $z \ge 0$ and <i>C</i> is positively oriented.	[2]	(8)			
	b)	Use Green's theorem to evaluate $\oint_C (e^x + y^2) dx + (e^y + x^2) dy$ where <i>C</i> is the boundary of the region between $y = x^2$ and $y = 2x$.	[2]	(6)			
		MODULE III					
			со	Marks			
15.	a)	Using the method of variation of parameter solve the differential equation $(D^2 - 2D + 5)y = e^x tan 2x$.	[3]	(8)			
	b)	Solve $(D^3 + 3D^2 - 5D - 39I)y = -300cosx$.	[3]	(6)			
		OR					
			СО	Marks			
16.	a)	Solve $(D^2 - 4D + 3I)y = e^x - \frac{9}{2}x^2$.	[3]	(8)			
	b)	Solve the initial value problem $x^2y'' - 3xy' + 4y = 0$ $y(1) = \pi$, $y'(1) = 4\pi$.	[3]	(6)			
		MODULE IV					
			CO	Marks			
17.	a)	Using Laplace transform, solve the differential equation $y'' + 9y = 10e^{-t}, y(0) = 0, y'(0) = 0$.	[4]	(8)			
	b)	Find $L(te^{-t}\cos t)$.	[4]	(6)			
		OR					
			СО	Marks			

201A4Total Pages: 3a) Apply convolution theorem to find the Laplace inverse transform
of
$$\frac{240}{(s^2+1)(s^2+25)}$$
.[4](8)b) Determine the response of the damped mass- spring system under a square
wave, modeled by
 $y'' + 3y' + 2y = r(t) = u(t-1) - u(t-2), y(0) = 0, y'(0) = 0$ [4](6)MODULE VCO Marksa) Show that $\int_0^\infty \frac{\sin \omega - \omega \cos \omega}{\omega^2} \sin x \omega \, dx \begin{cases} \frac{\pi}{2}x & 0 < x < 1 \\ \frac{\pi}{4} & x = 1 \\ 0 & x > 1 \end{cases}$ [5](8)b) Find the Fourier transform of $f(x) = \begin{cases} x & -1 < x < 1 \\ 0 & otherwise \end{cases}$ [5](6)ORCO Marksa) Find the Fourier transform of $f(x) = \begin{cases} x & -1 < x < 1 \\ 0 & otherwise \end{cases}$ [5](6)OR

Hence evaluate
$$\int_0^\infty \frac{\sin t}{t} dt$$
. [5] (8)

b) Compute the Fourier transform of convolution of the functions

Α

18.

19.

20.

$$f(x) = g(x) = e^{-x^2}$$
. [5] (6)