Duration: 3 Hours

CO

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM) SECOND SEMESTER B.TECH DEGREE EXAMINATION (Supplementary), December 2021

Course Code: 20PHT100

Course Name: Engineering Physics A

Max. Marks: 100

Β

PART A

(Answer all questions. Each question carries 3 marks)

		00
1.	Define the Q factor for a damped and a forced harmonic oscillator.	[1]
2.	Distinguish between transverse and longitudinal waves with examples.	[1]
3.	Explain the working of an antireflection coating.	[2]
4.	Differentiate grating spectra and prism spectra.	[2]
5.	The minimum uncertainty in the transition time of a particle from excited state to ground state is equal to 2 nanoseconds. What is the minimum uncertainty in the frequency of the particle?	[3]
6.	Explain any three applications of nanomaterials in real life.	[3]
7.	What is Gauss's law in magnetism? Write down its differential form.	[4]
8.	Write any three differences between conduction current and displacement current.	[4]
9.	What is a solar cell? Draw its I-V characteristics.	[5]
10.	Write any three advantages of fibre optic communication over conventional communication.	[5]

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

			CO	Marks
11.	a)	What is a damped harmonic oscillator? Derive the differential equation of a damped harmonic oscillator and obtain its solution. Discuss three cases of damping with displacement time graph.	[1]	(10)
	b)	The frequency of a tuning fork is 500 Hz and its Q factor is 7×10^4 .	[1]	
		Find the relaxation time and the damping constant.	[1]	(4)

128A1

Β

OR

			CO	Marks
12.	a)	Derive the expressions for the velocity and fundamental frequency of a transverse wave along a stretched string.	[1]	(10)
	b)	The equation of a wave travelling in a string is given by $y=4\sin\pi(2x-40t)$ where x is in meters and t is in seconds. Evaluate the wavelength, frequency, time period and velocity of propagation.	[1]	(4)
		MODULE II		
			СО	Marks
13.	a)	With necessary diagram, write the formation of interference pattern in an air wedge and derive an expression for the diameter of a thin wire.	[2]	(10)
	b)	Newton's rings are formed with reflected light of wavelength 585 nm with a liquid between the plane and curved surfaces. The diameter of the 5 th dark ring is 0.3 cm and radius of curvature of the surface is 1 m. Calculate the refractive index of the liquid.	[2]	(4)
		OR		
			СО	Marks
14.	a)	What is Diffraction grating? Derive Grating equation. What is	[0]	(10)
		Rayleigh Criterion?	[2]	(10)
	b)	What is the highest order spectrum which may be obtained with a light of wavelength 6000 Å by means of a plane transmission grating having 50×10^4 lines/meter	[2]	(4)
		MODULE III		
			CO	Marks
15.	a)	What is normalization condition? What is its physical significance? Derive time dependent Schrodinger equation.	[3]	(10)
	b)	What is quantum mechanical tunneling? Give an example.	[3]	(4)
		OR		
			CO	Marks
16.	a)	What is quantum confinement? Compare the following nanostructures. (i) nano sheets (ii) nano wires (iii) quantum dots.	[3]	(10)
	b)	Explain the mechanical and electrical properties of nanomaterials	[3]	(4)
		MODULE IV		
			CO	Marks
17.	a)	Define the term magnetic induction. Distinguish dia, para and ferromagnetism. Give two examples for each.	[4]	(10)
	b)	Find the magnetization of a ferromagnetic material if a magnetic field strength of 200 Am ⁻¹ is applied. The relative permeability of the material is 16.5.	[4]	(4)

128A1

Β

OR

		CO	Marks
a)	Using Maxwell's equation in free space, arrive at the differential equation for electromagnetic wave propagation. Prove that light is an electromagnetic wave.	[4]	(10)
b)	State and derive equation of continuity.	[4]	(4)
	MODULE V		
		СО	Marks
a)	Distinguish type-I and type –II superconductors. Plot magnetization vs. magnetic field curves in both types. Mention any two applications of superconductors.	[5]	(10)
b)	What is Meissner effect? Prove that superconductors are perfect diamagnetic materials	[5]	(4)
	OR		
		СО	Marks
a)	Explain how light is propagated in a step index fibre. Derive the numerical aperture of a step index fibre. Mention any two medical applications of optical fibre.	[5]	(10)
b)	An optical fibre has a core refractive index 1.54 and a cladding of 1.52. If the signal is launched from a liquid medium of refractive index 1.30, (i) what is the numerical aperture? (ii) what is the acceptance angle?	[5]	(4)
	b) a) b)	 equation for electromagnetic wave propagation. Prove that light is an electromagnetic wave. b) State and derive equation of continuity. MODULE V a) Distinguish type-I and type –II superconductors. Plot magnetization vs. magnetic field curves in both types. Mention any two applications of superconductors. b) What is Meissner effect? Prove that superconductors are perfect diamagnetic materials OR a) Explain how light is propagated in a step index fibre. Derive the numerical aperture of a step index fibre. Mention any two medical applications of optical fibre. b) An optical fibre has a core refractive index 1.54 and a cladding of 1.52. If the signal is launched from a liquid medium of refractive index 1.30, 	 a) Using Maxwell's equation in free space, arrive at the differential equation for electromagnetic wave propagation. Prove that light is an electromagnetic wave. b) State and derive equation of continuity. (4) b) State and derive equation of continuity. (4) (4) (4) (4) (5) (6) (6) (6) (7) (7) (8) (8) (9) (10) (11) (12) (12) (13) (14) (15) (15) (16) (16)