Turn Over

 $(10 \times 2 = 20)$

B.A DEGREE (CBCS) REGULAR / REAPPEARANCE EXAMINATIONS,

DECEMBER 2021

Second Semester

B.A Corporate Economics Model III

Core Course - EC2CRT06 - MATHEMATICS FOR ECONOMICS- II

2017 ADMISSION ONWARDS

BC264AC8

Time: 3 Hours

Max. Marks: 80

Part A

Answer any ten questions. Each question carries 2 marks.

- 1. Find the derivative of x^4
- 2. Find the derivative of $(x^2+1)(x+3)$
- 3. Find y_1 if $y=x^2 log x$
- 4. What are assignment problems?
- 5. How will you solve maximisation problems using assignment techniques?
- 6. What are transportation problems ?
- 7. Write a short note on Vogel's method.
- 8. What are unbalanced problems ? How are they solved?

$$\begin{pmatrix} 2 & 3 & 1 \\ 2 & 0 & 1 \\ 1 & 2 & 3 \end{pmatrix}$$
 9. Find the rank of

10. Define equivalent matrices.

- 11. Define finite and infinite sets.
- 12. Explain difference of two sets.

Part B

Answer any six questions.

Each question carries 5 marks.

13. Find

$$rac{dy}{dx}$$
if $x^2-y^2+3x=5y$

.....

2

2

Reg No

Name

QP CODE: 21103344

14. If
$$x^3 + y^3 = 3axy$$
 find $\displaystyle rac{dy}{dx}$

- 15. Distinguish between unbalanced assignment problems and transportation problems.
- 16. Find the initial feasible solution to the transportation problem given below by North west corner rule

	Α	В	С	D	Supply
I	6	4	1	5	14
II	8	9	2	7	16
	4	3	6	2	5
Demand	6	10	15	4	

$$egin{pmatrix} 1&1&1\ 1&2&-3\ 2&-1&3 \end{pmatrix}$$
 is nonsingular

17. Define nonsingular matrix Prove that A= $\sqrt{2}$ -1

$$\begin{pmatrix} 2 & -3 \\ 4 & -1 \end{pmatrix}$$

- 18. Find the inverse of the matrix
- 19. Explain subset and superset
- 20. Using venn diagram prove $A \cap (B C) = (A \cap B) C$
- 21. If A={3,4,5,6}, B={3,5,7,9}, C={6,7,8,10,12} find $A \times (B C)$

(6×5=30)

Part C

Answer any **two** questions.

Each question carries **15** marks.

22. Differentiate
$$rac{(x-1)(x-5)}{(x+2)(x+1)}$$

23. Find the rank of the matrix A by reducing to its row equivalent Canonical form

(4)	0	2	6 \
2	1	3	1
0/	1	2	-2/

24. Solve the assignment problem

	Р	Q	R	S	Т
A	5	11	10	12	4
В	2	4	6	3	5
С	3	12	5	14	6
D	6	14	4	11	7
E	7	9	8	12	5

25. Find the initial feasible solution to the transportation problem using lowest cost entry method

	Α	В	С	D	Supply
I	6	4	1	5	14
II	8	9	2	7	16
	4	3	6	2	5
Demand	6	10	15	4	

(2×15=30)