Reg No	$:$
Name	

\qquad Name
B.A DEGREE (CBCS) REGULAR / REAPPEARANCE EXAMINATIONS, DECEMBER 2021

Second Semester
B.A Corporate Economics Model III

Core Course - EC2CRT06 - MATHEMATICS FOR ECONOMICS- II
2017 ADMISSION ONWARDS
BC264AC8

Part A
Answer any ten questions.
Each question carries 2 marks.

1. Find the derivative of x^{4}
2. Find the derivative of $\left(x^{2}+1\right)(x+3)$
3. Find y_{1} if $\mathrm{y}=x^{2} \log x$
4. What are assignment problems?
5. How will you solve maximisation problems using assignment techniques?
6. What are transportation problems?
7. Write a short note on Vogel's method.
8. What are unbalanced problems ? How are they solved?
9. Find the rank of $\left(\begin{array}{lll}2 & 3 & 1 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{array}\right)$
10. Define equivalent matrices.
11. Define finite and infinite sets.
12. Explain difference of two sets.

Part B

Answer any six questions.
Each question carries 5 marks.
13. Find

$$
\begin{aligned}
& \frac{d y}{d x} \\
& \text { if } \quad x^{2}-y^{2}+3 x=5 y
\end{aligned}
$$

14. If $x^{3}+y^{3}=3 a x y$ find $\frac{d y}{d x}$
15. Distinguish between unbalanced assignment problems and transportation problems.
16. Find the initial feasible solution to the transportation problem given below by North west corner rule

	A	B	C	D	Supply
I	6	4	1	5	14
II	8	9	2	7	16
III	4	3	6	2	5
Demand	6	10	15	4	

17. Define nonsingular matrix Prove that $\mathrm{A}=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3\end{array}\right)$ is nonsingular
18. Find the inverse of the matrix $\left(\begin{array}{cc}2 & -3 \\ 4 & -1\end{array}\right)$
19. Explain subset and superset
20. Using venn diagram prove $A \cap(B-C)=(A \cap B)-C$
21. If $\mathrm{A}=\{3,4,5,6\}, \mathrm{B}=\{3,5,7,9\}, \mathrm{C}=\{6,7,8,10,12\}$ find $A \times(B-C)$

Part C

Answer any two questions.
Each question carries 15 marks.
22. Differentiate $\frac{(x-1)(x-5)}{(x+2)(x+1)}$
23. Find the rank of the matrix A by reducing to its row equivalent Canonical form

$$
\left(\begin{array}{cccc}
4 & 0 & 2 & 6 \\
2 & 1 & 3 & 1 \\
0 & 1 & 2 & -2
\end{array}\right)
$$

24. Solve the assignment problem

	P	Q	R	S	T
A	5	11	10	12	4
B	2	4	6	3	5
C	3	12	5	14	6
D	6	14	4	11	7
E	7	9	8	12	5

25. Find the initial feasible solution to the transportation problem using lowest cost entry method

	A	B	C	D	Supply
I	6	4	1	5	14
II	8	9	2	7	16
III	4	3	6	2	5
Demand	6	10	15	4	

