(5)

Reg No.:_____ Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fourth semester B.Tech examinations (S), September 2020

Course Code: FT202

Duration: 3 Hours

Course Name: PRINCIPLES OF CHEMICAL ENGINEERING (FT) Max. Marks: 100 **PART A** Marks Answer any three full questions, each question carries 10 marks. 1 Discuss how food technology is related to chemical engineering (5) b) Discuss with examples unit operations and unit processes (5) 2 An aqueous solution of sodium carbonate containing 15 % carbonate by weight.80 % of the carbonate is removed as Na₂CO₃.10 H₂O by evaporation of (10)water and subsequent cooling at 278 K. The solubility of Na₂CO₃.10 H₂O is 9 % by weight. On the basis of 100 kg of solution determine the quantity of crystals formed and amount of water evaporated. 3 Propane is burnt with excess of air to ensure complete combustion. If 50kg of CO₂ and 20 kg CO are obtained when propane is completely burnt with 550kg (10)air. Determine i) Mass of propane burnt in kg ii) % excess air iii) Composition of flue gas. Molecular weight of air = 294 Define the terms Orsat, ultimate, proximate methods of analysis. (5) a) b) Sulphur is burned in dry air, the gas leaving the burner contains SO₂- 15 %, O2 - 5 %, and N_2 - 80 %. Determine the sulphur used. (5) PART B Answer any three full questions, each question carries 10 marks. 5 Use the enthalpies of combustion for the burning of CO₂ (g), H₂ (g) and C(s) to determine ΔH^{o} for the reaction : $C(s) + H_{2}O(g) \rightarrow H_{2}(g) + CO(g)$

(1) CO (g)
$$+\frac{1}{2}$$
 O₂ (g) \rightarrow CO₂ (g) $\Delta H = -238$ KJ/mol

(2)
$$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(g)$$
 $\Delta H = -241 \text{ KJ/mol}$

(3)
$$C(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H = -393 \text{ KJ/mol}$

b) State and explain i) Kopp's rule

6 1 kg of water is heated from 250K to 400 K at standard atmospheric pressure.

02000FT202052002

		How much heat is required for the change if the mean heat capacity of ice	(10)
		between 250K and 273 K is 2.03KJ/Kg K and that of water between 273K and	
		373 K is 75.726 KJ/Kg K.? The heat capacity of water vapour is given as $C_p =$	
		$30.475 + 9.652~x~10^{\text{-}3}~T + 1.189~X~10^{\text{-}6}~T^2~KJ/Kmol~K.~\Delta H_{\rm f}$ and $\Delta H_{\rm v}$ are 6012	
		KJ/Kmol K and 40608 KJ/Kmol K respectively.	
7		What is meant by rheology of fluids? Explain the classification of fluids on the	(10)
		basis of Newton's law of viscosity	
8	a)	With a neat schematic explain the method of calculation of pressure drop using	(5)
		a Differential manometer.	
	b)	Explain the Reynold's experiment to determine the nature of flowing fluid	(5)
		through a pipe.	
		PART C	
9		Answer any four full questions, each question carries 10 marks. What is Fanning Friction factor? Derive the fanning equation to find out the	(10)
		pressure drop due to friction in a pipe for a turbulent flow.	
10		Derive the Hagen-Poiseuille equation for finding out the pressure drop in pipe	(10)
11	a)	Explain the characteristic curves of a centrifugal Pump	(5)
	b)	Write short notes on (i) Air priming (ii) NPSH (iii) Cavitation in centrifugal	(5)
		Pumps.	
12		Explain the working of single acting and double acting reciprocating Pump.	(10)
13		Describe the working and derive the flowrate equation for an orifice meter	(10)
14		Explain the effect of superficial velocity on pressure drop and bed height during	(10)
		fluidization	
