Reg No.:		Name:	-
	SEV	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY /ENTH SEMESTER B.TECH DEGREE EXAMINATION(R&S), DECEMBER 20)19
		Course Code: ME467 Course Name: Cryogenic Engineering	
Ma	Max. Marks: 100 Duration: 3 Ho		
		PART A Answer any three full questions, each carries 10 marks.	Marks
1	a)	List four major historical developments in cryogenics since 1877.	(2)
	b)	Determine the thermal conductivity of air at 250 K and 101.3 kPa if the mean	(5)
		free path of air at this condition is 49 nm, the gas constant for air is 287 J/kg K,	
		the specific heat ratio is 1.4 and the specific heat at constant volume is 716.5 J/kg K.	
	c)	Discuss any three applications of cryogenics in space technology.	(3)
2	a)	Explain i) Meissner effect ii) Fountain effect	(4)
	b)	Explain the terms i) Transition temperature and ii) Critical current of	(3)
		superconductors.	
	c)	Sketch and explain the variation of specific heat of liquid helium 4 at near	(3)
		absolute zero temperature.	
3		Explain the Joule Thomson effect. Show the inversion curve of a real gas on a	(10)
		T-p diagram. Prove that an ideal gas will not experience a temperature change	
		upon isenthalpic expansion.	
4	a)	Prove that COP of an ideal Stirling cycle cryocooler is the same as that of a	(5)
		Carnot cycle.	
	b)	With the help of a neat sketch, explain the magnetic cooling process.	(5)
		PART B Answer any three full questions, each carries 10 marks.	
5	a)	With a neat schematic and T-s diagram, explain the working of a liquefaction	(8)
		system used for neon.	
	b)	Explain why the simple Linde-Hampson system does not work for gases such as	(2)
		neon, hydrogen and helium.	
6		With a neat sketch and T-s diagram explain the working of Simon helium	(10)
		liquefaction system.	

- 7 a) With a neat sketch and T-s diagram explain the working of a Claude (7) refrigeration system. Derive an expression for COP assuming that expander work is utilized to compress the gas.
 - b) Draw the T-s diagram and derive an expression for COP of a thermodynamically (3) ideal isobaric source cold gas refrigerator.
- 8 With the help of a schematic and T-s diagram explain the working of a Phillips (10) refrigerator. Derive an expression for its COP.

PART C

Answer any four full questions, each carries 10 marks.

- 9 With a neat sketch explain the functions of different components of a typical (10) cryogenic liquid storage vessel.
- 10 Explain in detail the different types of insulations used in cryogenic equipments. (10)
- 11 Explain the various features of cryogenic fluid transfer systems. (10)
- 12 With a neat sketch explain the working of a constant-volume gas thermometer. (10)
- 13 Explain with a neat diagram the working of a capacitance type liquid level (10) gauge.
- 14 Explain the working of i) Turbine flow meter ii) Vapour pressure thermometer (10)
