Reg No.:__

F192207

Pages:5

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SIXTH SEMESTER B.TECH DEGREE COMREHENSIVE EXAMINATION(S), DECEMBER 2019 **Course Code: CS352 Course name: COMPREHENSIVE EXAM** Max. Marks: 50 Instructions: (1) Each question carries one mark. No negative marks for wrong answers (2) Total number of questions: 50 (3) All questions are to be answered. Each question will be followed by 4 possible answers of which only ONE is correct. (4) If more than one option is chosen, it will not be considered for valuation. (5) Calculators are not permitted PART A- COMMON COURSES 1. The sum of the series $\sum_{k=0}^{\infty} \left(\frac{1}{2}\right)^k$ is $\frac{2}{3}$ 1 1 a) c) d) b) 3 The solution of the differential equation y'' - 4y' + 4y = 0 is 2. $y = (A + Bx)e^{2x}$ b) $y = (A + Bx)e^{-2x}$ c) $y = (A + Bx)e^{x}$ d) $y = (A + Bx)e^{-x}$ a) 3. The resultant of two equal forces has the same magnitude as either of the forces, then the angle between the two forces is b) 30[°] a) 120^{0} c) 90° d) Two bodies of masses m_1 and m_2 are dropped from the top of a tower of same height. When 4. these bodies reach the ground, their kinetic energies will be in the ratio b) 1: √2 c) 1:4 a) 1:2 d) 5. The top view of a pentagonal prism with axis perpendicular to the vertical plane and parallel to horizontal plane will be a a) Pentagon b) Rectangle c) Trapezoid d) 6. In perspective projection the object is assumed to be kept on which of these planes. a) Picture plane b) Horizon plane c) Ground plane d) Which is the most abundant element available in the atmosphere? 7. b) Nitrogen a) Oxygen c) Argon d) The total amount of greenhouse gases produced to directly and indirectly support human 8. activities, usually expressed in equivalent tons of carbon dioxide

a) Carbon Dating b) Carbon Trading c) Carbon Footprint d) Carbon Factor 9. One of the pins in a 3 pin plug top is bigger than the rest. This is most closely related to design for 'X', where 'X' is

> a) Assembly b) Manufacturing c) Life cycle Cost d) Environment

Page 1 of 5

Duration: 1 Hour

1

60⁰

1:1

Straight line

Central plane

Carbon di oxide

Name:

U 10.	Wh	ich of the following	g can l	F192207 be most appropriat	tely as	ssociated with the	desigi	Pages:5
	a)	Speed	b)	Velocity	c)	Diameter	d)	Height
				PART B- CC	ORE COURSES			
11.	A si	ix side die is rolled	twice.	What is the proba	bility	that the sum is 9.		
	a)	1/6	b)	1/9	c)	2/9	d)	1/8
12.	Wh	ich of the propositio	ons are	e equivalent to p =	⇒ q			
		(1) ~q	⇒ ~I	o (2)~p	v q	(3)	~(рл	~q)
10	a)	All	b)	Only (1), and (2)	c)	Only (2), and (3)	d)	Only (1), and (3)
13.		Let X=	{1,2	/ $and R = \{\}$	x-y 18	divisible by 3}.11	ien R	1s an
14	a) If 2	Equivalence relation 5 teams play in a ro	b) und re	Reflexive relation bin league totally	c) v how	Symmetric relation many matches are	d) e to be	Transitive relation
1.1.	н <u>2</u> а)	250	h)	150	c)	350	d)	300
15.	The ther	e symbolic form of t n Meenakshi will tal	he sta ke Eng	tement: "If either s glish "is	Santh	osh takes calculus	or Po	onam takes physics
	a)	$(S \land P) \to M$	b)	$(S \lor P) \to M$	c)	$(S \lor P) \land M$	d)	$(S \land P) \lor M$
16.				Contraposit	ive of	$P \rightarrow Q$ is		
	a)	$P \rightarrow Q$	b)	$Q \rightarrow P$	c)	$Q \rightarrow P$	d)	$P \rightarrow Q$
17.		Out of 7 consonants	s and 4	4 vowels, how may for	ny wo med?	ords of 3 consonan	ts and	2 vowels can be
	a)	24400	b)	21300	c)	210	d)	25200
18.	A t	ext editor generally sequence of lin	allow nes of	s searching in both code is stored as a	h dire a link	ctions, with wrap a ed list, which type	aroun is mo	d if necessary. If the ost suitable?
	a)	Singly linked list	b)	Doubly linked	c)	Singly linked	d)	Doubly linked
19.	A aı s	circular queue of c rray currently contained of the conta	haract ins the are do	ers is implemented e elements d,-,-,a,b eleted and three ar fr	d usin ,c sta re add ront?	ng a linear array wh rting from index 1 ed, what are the ne	nose f . Here ew po	irst index is 1. The e '-' denotes empty sitions of rear and
	a)	6, 1	b)	4, 6	c)	5, 3	d)	3, 5
20.	Cor	nsider the following	loop					
	for	i = 1 to n						
	fe	or $j = 1$ to i						
		print fiello	Tha	eventatia tima a	mela	vity of above loca	ic	
		α (²)	Line a	O(nloan)	mpie	α (3)	4)	O(n)
21	a) Tha	$O(n^{-})$	D)	U(niogn)	c) • ^ •	$U(n^{-})$	u)	U(II)
21.	1 ne	posurx expression	IOF th	e minx expression	хту	(3 + 2) + 10 18		

U				F192207				Pages:5			
	a)	x y ^ 5 z * / 10 +	b)	x y 5 * z ^ / 10+	c)	x y ^ 5 z * 10 / +	d)	x y 5 z ^ * / 10 +			
22.	W	hich of the following	ng trav	versal gives nodes	in nc	n-decreasing order	in a l	Binary Search Tree			
	a)	Inorder	b)	Preorder	c)	Postorder	(d)	None of the above			
23.	The	e maximum degree o	of any	vertex in a simple	grap	h with <i>n</i> vertices is	Pages $z * 10 /$ d) $x y 5 z$ asing order in a Binary Sder(d)None ofder(d)nevertices is(d)n(d)7evertices is(d) a^*b^*aa (d) a^*b^*aa ession, $0^*(1(01 \times 0)^*1)0^*$ (d)Binaryentation ofreprese(d)Binaryentation ofmultipleizes the set of all binary(d)3ly(d)All of tedof lengt(1)(d)Cecepting the language a*(d)5at free(d)ext free(d)ext free(d)arautomaener:(d)s(d)none of				
	a)	n+1	b)	n-1	c)	2n-1	d)	n			
24.	Given, the hash function $h(k) = k \mod 3$, what is the number of collisions to store the following										
	seq	uence of keys? 15, 1	11, 34	, 10, 98, 51, 37, 14	, 16,	47					
	a)	2	(b)	3	c)	9	(d)	7			
25.	Reg	gular expression for	all str	ings starts with 'al	o' an	d ends with 'aa' is					
	a)	ab(a+b)*aa*	(b)	ab(a+b)*aa	c)	ab*aa	(d)	a*b*aa			
26.	What is the language accepted by the following regular expression, $0^{*}(1(01^{*}0)^{*}1)0^{*}0^{*}$?										
	a)	Binary representation of multiples of 6	(b)	Binary representation of multiples of 4	c)	Binary representation of multiples of 3	(d)	Binary representation of multiples of 2			
27.	What is the minimum number of states in a DFA that recognizes the set of all binary strings that contains four consecutive 1's?										
	a)	6	(b)	5	c)	4	(d)	3			
28.	The language accepted by Push down Automaton:										
	a)	Recursive Language	(b)	Context free language	c)	Linearly Bounded	(d)	All of the mentioned			
29.	For	a give Moore Mach	nine, (Given Input='1010	10',	thus the output wou	ıld be	of length:			
	a)	Input +1	(b)	Input	c)	Input -1	(d)	Cannot be predicted			
30.	Ho	w many states will b	be the	re for the minimum	ı stat	e DFA accepting th	e lan	guage a*bba.			
	a)	2	b)	3	c)	4	d)	5			
31.	Pig	eonhole principle is	the u	nderlying principle	e of						
	a)	Pumping lemma	(b)	Turing machine	c)	Context free grammar	(d)	Push down automata			
32.	Which one of the following can not be scheduled by the kernel?										
22	a)	kernel level thread	(b)	user level thread	c)	process	(d)	none of the mentioned			
55.	fork ()										
	10. fo	rk (),									
	10. fc	rk (),									
	10 The	total number of ch	ild pr	names arouted in							
	1 116	violai number of Ch	na pro	Juesses created is							

Page 3 of 5

U				F192207				Pages:5
	a)	3	(b)	4	c)	7	(d)	8
34.	In a sear effe	a paged memory man rch Translation Look ective memory acces	nagem c-asid s time	nent algorithm, the e Buffer (TLB) and e is	hit r d 10(atio is 70%. If it tal) nanoseconds (ns)	to ac) nanoseconds to cess memory, the
	a)	69 ns	(b)	91 ns	c)	160 ns	(d)	190 ns
35.	A sy beg sam	ystem uses FIFO po in with. The system ne 100 pages but nov	licy fo first a v in th	or page replacement accesses 100 disting ne reverse order. He	nt. It ct pa ow n	has 4 page frames ges in some order a nany page faults wi	with r and th ill occ	no pages loaded to ten accesses the cur?
	a)	196	(b)	192	c)	197	(d)	195
36.	Wh	ich of the following	schee	luler selects the pro	ocess	s that are ready to e	xecut	e and allocates CPU
37	a) In ti	Long-term scheduler he non-blocking sen	(b) d :	Job scheduler	c)	Short term scheduler	(d)	Medium term scheduler
38.	a) Wh	The sending process keeps sending until the message is received ich disk scheduling	(b) algori	the sending process sends the message and resumes operation thm is known as 'e	c) eleva	the sending process keeps sending until it receives a message tor' algorithm	(d)	none of the mentioned
	a)	LOOK	(b)	SCAN	c)	CSCAN	(d)	CLOOK
39.	The	basic principle und	erlyin	g behind the conce	ept of	f cache memory is		
40.	a) The	Stored program concept Booth recoded form	(b) n of -(Locality of reference 6 is	c)	Divide and conquer	(d)	None of the above
	a)	-1 +1 0 -1 0	(b)	+1 -1 +1 -1 0	c)	0 -1 +1 -1 0	(d)	0 +1 -1 +1 0
41.	The proo	e interrupt servicing cessor to be serviced	mech l is	anism in which the	requ	lesting device ident	tifies	itself to the
	a)	Polling	(b)	Vectored interrupts	c)	Interrupt nesting	(d)	Simultaneous requesting
42.	The bloc	e cache memory of 1 cks can the cache ac	K wo comn	rds uses direct map nodate?	oping	g with a block size	of 4 v	vords. How many
	a)	256 words	(b)	512 words	c)	1024 words	(d)	128 words
43.	Wh	ich among the follow	wing	methods <i>does not</i> h	ave	2 representations for	or 0?	
	a)	1's complement method	(b)	2's complement method	c)	Sign and magnitude method	(d)	None of the above
44.	Co	onsider a computer s a	ystem verag	with a cache with a cache with a cacess time expe	acce rienc	ess time is C, hit rat ced by the processo	e h, r r is	niss penalty M. The
	a)	hMC	(b)	h(C-1)+MC	c)	hC+(1-h)M	(d)	None of the above
45.	Cor rela	nsider the relations r tion r1 contains 200	1(P, C 0 tup	Q, R) and r2(R, S, T les and r2 contains	Г) wi 250(th primary keys P a) tuples. The maxin	and R num s	respectively. The size of the join

\mathbf{U}		F192207		Pages:5						
	r1⊠ r2 is : a) 2000	(b) 2500	c) 4500	(d) 5000						
46.	Which of the following W, X, Y,Z and primary	g is NOT a superkey in a r v key VY?	elational schema with a	attributes V,						
	a) VXYZ	(b) VWXZ	c) VWXY	(d) VWXYZ						
47.	Dependency preservati	on is not guaranteed in								
	a) 3NF	(b) BCNF	c) 1NF	(d) 2NF						
48.	Suppose that we have a = 1024 bytes. The orde long, and we have cons	an ordered file with r = 30 ring key field of the file is structed a primary index for	,000 records stored on s V = 9 bytes long, a bl or the file. The blocking	a disk with block size B ock pointer is P = 6 bytes g factor for the index is						
	a) 68	(b) 64	c) 10	(d) 3000						
49.	What is the result of the following query?									
	DELETE FROM student									
	WHERE marks < (SELECT avg(marks)									
	FROM student);									
	a) The query deletes all the tuples whose marks are greater than the average marks	(b) The query deletes all the tuples whose marks are less than the average marks	c) The query deletes all the values under the marks attribute which are less than the average	(d) The query is syntactically wrong and does not execute						
50.	Ensuring isolation property is the responsibility of the									
	a) Recovery- management component of the DBMS	(b) Concurrency- control component of the DBMS	c) Transaction- management component of the DBMS	(d) Buffer management component in DBMS						
