Reg No.:____

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE COMREHENSIVE EXAMINATION(S), DECEMBER 2019

Course Code: CE352 Course name: COMPREHENSIVE EXAM

Duration: 1 Hour

1

d)

Max. Marks: 50

(1) Each question carries one mark. No negative marks for wrong answers(2) Total number of questions: 50

- (3) All questions are to be answered. Each question will be followed by 4 possible answers of which only ONE is correct.
- (4) If more than one option is chosen, it will not be considered for valuation.

(5) Calculators are not permitted

PART A- COMMON COURSES

- 1. The sum of the series $\sum_{k=0}^{\infty} \left(\frac{1}{3}\right)^k$ is
 - a) $\frac{1}{3}$ b) $\frac{2}{3}$ c)

2. The solution of the differential equation y'' - 4y' + 4y = 0 is

- a) $y = (A + Bx)e^{2x}$ b) $y = (A + Bx)e^{-2x}$ c) $y = (A + Bx)e^{x}$ d) $y = (A + Bx)e^{-x}$
- 3. The resultant of two equal forces has the same magnitude as either of the forces, then the angle between the two forces is
 - a) 120° b) 30° c) 90° d) 60°
- 4. Two bodies of masses m_1 and m_2 are dropped from the top of a tower of same height. When these bodies reach the ground, their kinetic energies will be in the ratio
 - a) 1:2 b) 1:V2 c) 1:4 d) 1:1
- 5. The top view of a pentagonal prism with axis perpendicular to the vertical plane and parallel to horizontal plane will be a
 - a) Pentagon b) Rectangle c) Trapezoid d) Straight line
- 6. In perspective projection the object is assumed to be kept on which of these planes.
 - a) Picture plane b) Horizon plane c) Ground plane d) Central plane
- 7. Which is the most abundant element available in the atmosphere?
 - a) Oxygen b) Nitrogen c) Argon d) Carbon di oxide
- 8. The total amount of greenhouse gases produced to directly and indirectly support human activities, usually expressed in equivalent tons of carbon dioxide
 - a) Carbon Dating b) Carbon Trading c) Carbon Footprint d) Carbon Factor
- 9. One of the pins in a 3 pin plug top is bigger than the rest. This is most closely related to design for 'X', where 'X' is
 - a) Assembly b) Manufacturing c) Life cycle Cost d) Environment

U		Pages:5						
10.	Which of the following can be most appropriately associated with the design space of a ball?							
	a) Speed	b) Velocity	c) Diameter	d) Height				
	PART B- CORE COURSES							
11.	Elongation of a bar of uniform cross section having unit area of length 'L', due to its own weight 'W' is given by							
	a) 2WL/E	b) WL/E	c) WL/2E	d) WL/3E				
12.	If a material neither e poisons ratio must be	expands nor contracts in	volume when subjecte	ed to stresses, then the				
	a) 0.25	b) 0.33	c) 0.5	d) zero				
13.	•	l load w in kN/m is acting of at the midpoint of cantile	-	-				
	a) 2	b) 3	c) 4	d) 5				
14.	-	sses σ that are mutually perties E and μ , the resulting	-	• • • • •				
	a) $\frac{\sigma}{E}(1+\mu)$	b) $\frac{\sigma}{E}(1-\mu)$	c) $\frac{\sigma}{E}(1+2\mu)$	d) $\frac{\sigma}{E}(1-2\mu)$				
15.		lumn theory, the crippling value of <i>C</i> for a column w						
	a) 5/8	b) 8/5	c) 5/4	d) 4/5				
16.	The polar modulus (torsional section modulus) for a solid shaft of diameter (D) is							
. –	a) $\frac{\pi D^2}{4}$	b) $\frac{\pi D^3}{16}$	c) $\frac{\Pi D^3}{32}$	d) $\frac{nD^4}{64}$				
17.	For a circular shaft sub	jected to torsion, the variat	ion of shear stress acro	ss the section is				
	a) Parabolic with maximum stress at centre	b) uniform over the section	c) Linear with zero at centre	d) linear with maximum at centre				
18.		ial load P in a member with						
	a) $\int P^2 dx / AE$	b) $\int P^2 dx / EI$	c) $\int P^2 dx/2EI$	d) $\int P^2 dx/2AE$				
19.	The prop reaction of a span is	propped cantilever of spa	nn L, subjected to udl	of intensity w over full				
	a) 3 wL/8	b) 5wL/8	c) wL/8	d) 9wL/8				
20.		half the span crosses a sir naximum when the UDL i		om left to right. The				
21.		 b) With its tail at support A hich carries 3 equally space ntal reaction at the support 		d) With its head at support B are supported at				

F192205

Pages:5

	a)	More at the support which is at higher level	b)	More at the support which is at lower level	c)	equal	d)	Cannot be generalised
22.	A beam AB (span L, flexural rigidity EI) is fixed at A and B. The support B settles by Δ . The effect is							
	a)	A moment of $\frac{6 EI \Delta}{L^2}$ is induced at A only	b)	A moment of $\frac{6 EI \Delta}{L^2}$ is induced at B only	c)	Moment of $\frac{6 EI \Delta}{L^2}$ is induced at A and B	d)	Moment of $\frac{6 EI \Delta}{L^2}$ at A and $\frac{3 EI \Delta}{L^2}$ at B
23.	The analysis of a statically indeterminate beam can be done by							
	a)	Equations of equilibrium	b)	Equations of displacements or deformations	c)	Both (a) and (b)	d)	None of the above.
24.		beam ABC shown i ixed end 'A' is	n fiş	gure is horizontal. Th A		-	of co	ontraflexure from
			/	A 1 m	تا 			
			/	0.75 m	-	7 C 8 kN		
	a)	0.333 m	b)	0.666 m	c)	0.25 m	d)	0.75 m
25.	A uniform body 3m long, 2m wide and 1m deep floats in water. If the depth of immersion is 0.6m, the weight of the body is							
	a)	3.53kN	b)	33.5kN	c)	35.3kN	d)	25.2kN
26.	In pi	pe flow the critical H	Reyn	olds number is about				
	a)	640		500	c)	2000	d)	64000
27.	The velocity vector in a fluid is given $V=5x^4+3y^2+2z$ (in metre/sec). What is the acceleration of it at point (1,3,4) ?							e acceleration of
	a)	40 m/s^2	b)	20 m/s^2	c)	60 m/s ²	d)	80 m/s ²
28.	The flow in a pipe is said to be non-uniform when							
	a)	The liquid particles at all sections have the same velocities	b)	The liquid particles at different sections have different velocities	c)	The quantity of liquid flowing per second is constant	d)	Each liquid particle has a definite path
29.	Streamline and an equipotential line in a flow field							
	a)	Are parallel to each other	b)	Are perpendicular to each other	c)	Intersect at an acute angle	d)	Are identical
30.	Boundary layer thickness is the distance from the boundary to the point where velocity of the fluid is							
	a)	equal to 10% of free stream velocity	b)	equal to 50% of free stream velocity	c)	equal to 90% of free stream velocity	d)	equal to 99% of free stream velocity

U

U

F192205

Pages:5

31.	Mild steel contains carbon content up to							
	a)	0.25%	b)	0.25 to 0.7%	c)	0.7 to 1.5%	d)	>2%
32.	2. Impact value of aggregate for concrete used in wearing surface							
	a)	45%		Not greater than 30%	c)	Not less than 15%	d)	Not greater than 15%
33.	Most commonly used admixture in concrete to reduce the setting time of cement is							ent is
	a)	Calcium sulphate	b)	Calcium chloride	c)	Natural wood resins	d)	Pozzolana
34.	A ro	oof which slopes in 4	dire	ction is called?				
	a)	Shed roof	b)	Hipped	c)	Gambrel roof	d)	Gable end roof
35.	. The voussoir placed at crown of an arch is known as?							
	a)	Key	b)	Soffit	c)	Springer	d)	Haunch
36.	5. The process of injecting mortar with low water cement ratio at a high pressure through a r to repair cracks in concrete is called							through a nozzle
	a)	Grouting	b)	Shortcreting	c)	Guniting	d)	None of the above
37.	Coh	esionless soils are fo	ormeo	d due to				
	a)	Oxidation of rocks	b)	Leaching action of water on rocks	c)	Physical disintegration of rock	d)	Blowing of hot and cold wind
38.	The ratio of saturated unit weight to dry unit weight of a soil is 1.25. The water content of the soil is							
	a)	10%	b)	25%	c)	50%	d)	100%
39.	The toughness index of clayey soils is given by							
	a)	Plasticity Index/ Flow Index	b)	Liquid limit/ Plastic limit	c)	Liquidity Index/ Plastic Limit	d)	Plastic limit/ Liquidity index
40.	Unconfined compressive strength of a pure clayey soil is given by 120 KN/m ² , what will be value of cohesion?							what will be the
	a)	0	b)	60 kN/m ²	c)	120 kN/m ²	d)	240 kN/m ²
41.	Squ	are Root time metho	d is t	o determine				
	a)	T _v , Time factor	b)	a _v , Coefficient of compressibility	c)	C _v , Coefficient of consolidation	d)	m _v , Coefficient of volume compressibility
42.	In the stability analysis of finite slopes, the Swedish Circle method assumes that the surface of sliding is							
	a)	An Arc of a parabola	b)	Straight line	c)	An elliptical arc	d)	An arc of a Circle
43.	Con	-	/ roll	er is the best method	of co	ompaction in the ca	se of	
	a)	Moist Silty Sand	b)	Well graded dry sand	c)	Clay of medium compressibility	d)	Silt of high compressibility

44.	The modulus of rupture of concrete is							
	a) The direct tensile strength of concrete	b) The direct compressive strength of concrete	c) The tensile d) The strength of characteristic concrete under strength of bending concrete					
45.	As per IS 456-2000, in the limit state design of flexural member, the strain in reinforcing bars under tension at ultimate state should not be less than							
	a) $\frac{fy}{Fc}$	b) $\frac{fy}{Fc} + 0.002$	c) $\frac{fy}{1.15 Es}$ d) $\frac{fy}{1.15Es}$ +0.002	02				
46.	The limiting strain in an ex 456: 2000 is	xtreme fibre in concrete in a	a balanced section at limit state of flexure as per IS	oer IS				
	a) 0.002	b) 0.0035	c) 0.0038 d) 0.0041					
47.	For limit state of collapse in flexure of singly reinforced beams, if the strain in steel reaches the limiting value earlier than that in concrete, the beam section is called							
	a) Under reinforced section	b) Critical section	c) Over reinforced d) Balanced section section	ection				
48.								
	a) Tensile crack width is below a limit	b) Shear failure is avoided	 c) Stress in the tension d) Deflection of the beam is below a limiting value less than the allowable value 	low a				
49.	If d is the diameter of a bar, f_t is allowable tensile stress and fb is allowable bond stress, the bond length is given by							
	a) $\frac{ft d}{4 fb}$	b) $\frac{\pi ft d}{4 fb}$	c) $\frac{\pi ft d^2}{fb}$ d) $\frac{\pi ft d^2}{4 fb}$					
50		4 fb	fb $4fb$	1				

F192205

50. The load carrying capacity of a helically reinforced column as compared to that of a tied column is about
a) 5% less
b) 10% less
c) 5% more
d) 10% more
