Reg No.:

Name:____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE COMREHENSIVE EXAMINATION(S), DECEMBER 2019

Course Code: AE352 Course name: COMPREHENSIVE EXAM

Max. Marks: 50

Instructions: (1) Each question carries one mark. No negative marks for wrong answers

(2) Total number of questions: 50

(3) All questions are to be answered. Each question will be followed by 4 possible answers of which only ONE is correct.

(4) If more than one option is chosen, it will not be considered for valuation.

(5) Calculators are not permitted

PART A- COMMON COURSES

- 1. The sum of the series $\sum_{k=0}^{\infty} \left(\frac{1}{3}\right)^k$ is
 - a) $\frac{1}{3}$ b) $\frac{2}{3}$ c) $\frac{1}{2}$ d) 1

2. The solution of the differential equation y'' - 4y' + 4y = 0 is

- a) $y = (A + Bx)e^{2x}$ b) $y = (A + Bx)e^{-2x}$ c) $y = (A + Bx)e^{x}$ d) $y = (A + Bx)e^{-x}$
- 3. The resultant of two equal forces has the same magnitude as either of the forces, then the angle between the two forces is
 - a) 120° b) 30° c) 90° d) 60°

4. Two bodies of masses m_1 and m_2 are dropped from the top of a tower of same height. When these bodies reach the ground, their kinetic energies will be in the ratio

a) 1:2 b) 1:v2 c) 1:4 d) 1:1

5. The top view of a pentagonal prism with axis perpendicular to the vertical plane and parallel to horizontal plane will be a

a) Pentagon b) Rectangle c) Trapezoid d) Straight line

- 6. In perspective projection the object is assumed to be kept on which of these planes.
 - a) Picture plane b) Horizon plane c) Ground plane d) Central plane
- 7. Which is the most abundant element available in the atmosphere?
 - a) Oxygen b) Nitrogen c) Argon d) Carbon di oxide
- 8. The total amount of greenhouse gases produced to directly and indirectly support human activities, usually expressed in equivalent tons of carbon dioxide
 - a) Carbon Dating b) Carbon Trading c) Carbon d) Carbon Factor Footprint
- 9. One of the pins in a 3 pin plug top is bigger than the rest. This is most closely related to design for 'X', where 'X' is
 - a) Assembly b) Manufacturing c) Life cycle Cost d) Environment

Duration: 1Hour

Pages:6

F192200

U

10.

Which of the following can be most appropriately associated with the design space of a ball?

a) Speed b) Velocity c) Diameter d) Height

PART B- CORE COURSES

11. The output voltage of the log-amplifier is

a)
$$V_0 = -$$

 $(kT) \times \ln(Vi/Vref)$
b) $V_0 = -$
 $(kT/q) \times \ln(Vi/Vref)$
c) $V_0 = -$
 $(kT/q) \times \ln(Vref)$
d $VO =$
 $(kT/q) \times \ln(Vref)$
)
 V_i

12. Astable multivibrator operating at 150Hz has a discharge time of 2.5ms. Find the duty cycle of the circuit.

13. Find the resolution of a 10-bit A-D converter for an input range of 10v.

The expression for the transfer function of the given circuit is

a) $(R_f/R_1)/(1+j\omega CF b) = (R_f/R_1)/(1+j\omega CR_f c) + (R_f/R_1)/(1-j\omega CR_f c) + (R_f/R_1)/(1-j\omega$

15. For a second order low pass Butterworth filter the pass band voltage gain of is given by

a) 1.5	586 b) (0.707	c)	1.414	d)	0.586
--------	-------	-----	-------	----	-------	----	-------

16. Which of the following is an integrating type ADC

a)	Flash type	b)	Counter type	c)	Successive	d)	Dual Slope ADC
	converter		converter		approximation		
					type converter		

- 17. The addition of open loop zero pulls the root loci towards
 - The right and The left and Imaginary axis and d) The left and a) b) c) therefore system therefore system therefore system therefore system becomes more becomes unstable becomes becomes unstable stable marginally stable

18. If the unity feedback system is given by the open loop transfer function

Pages:6

	C	KS^2									
	G(2	$S(s) = \frac{1}{(1+0.3S)(1+0.5S)(1+0.5S)(1+0.5S)(1+0.5S)}$	5S) _v	what would be the init	ial sl	ope of magnitude plo	ot?				
	a)	20 dB/decade	b)	40 dB/decade	c)	60 dB/decade	d)	-20 dB/decade			
19.	Rot	Routh Hurwitz criterion gives:									
	a)	Number of roots in the right half of the s-plane	b)	Value of the roots	c)	Number of roots in the left half of the s-plane	d)	Number of roots in the top half of the s-plane			
20.	Cor	sider the loop trans	fer fu	nction K(s+6) / (s+3)	(s+5) In the root locus dia	ıgram	the centroid will be			
	loca	ated at:									
	a)	-4	b)	-1	c)	-2	d)	-3			
21.	Cay	ley Hamilton Theorem	rem s	tates that							
	a)	Every symmetric matrix satisfies its own characteristic equation	b)	Every square matrix satisfies its own characteristic equation.	c)	Every orthogonal matrix satisfies its own characteristic equation	d)	Every real symmetric matrix satisfies its own characteristic equation			
22.	Stat	te space analysis is a	applic	able even if the initia	l cor	nditions are					
	a)	Zero	b)	Non-zero	c)	Equal	d)	Not equal			
23.	Dur rela	tive error of measure Δ/B	for a remen	measure value "B", a at?	absol	lute error is obtained a $(A+1)/B$	as "A	", what will be the $(\mathbf{B} + \mathbf{A})/\mathbf{A}$			
24	a) 1 a	A/D		D/A		(A+1)/D	u)	$(\mathbf{D} + \mathbf{A})/\mathbf{A}$			
24.	rang	ge of 10 A is connected by a	cted v	with it, shunt resistance	e sho	ould be	onver	t it into animeter,			
	a)	0.1 Ω	b)	0.2 Ω	c)	0.01 Ω	d)	0.02 Ω			
25.	The	household energy	meter	is							
	a)	An indicating instrument	b)	Recording instrument	c)	An integrating instrument	d)	None of the above			
26.	For	measurement of hig	gh vo	ltage capacitors, suita	ble t	oridge is					
	a)	Wein bridge	b)	Maxwell's bridge	c)	Schering bridge	d)	None of the above			
27.	The	e nominal ratio of cu	irrent	transformer is given	by						
28.	a) For	Rated primary winding current/rated secondary winding current the measurement o	b) f resis	Number of turns in primary winding/number of turns in secondary winding stances. Kelvin's doub	c) ble b	Number of turns in secondary winding/Number of turns in primary winding ridge has high accura	d) cv be	Rated secondary winding current/Rated primary winding current cause			
	a)	It has two set of ratio arms which eliminates effect of resistance of connecting lead	b)	It has null indicating galvanometer	c)	It has two null indicator	d)	It has four sets of ratio arms which eliminates the effect of resistance of connecting lead			

29.	Detern	nine the decima	l equiv	valent of the signed	binary	number 11110100 i	n 1's c	complement form		
	a)	126	b)	11	c)	-126	d)	-11		
30.	The Ex	cess-3 code for	586 is	s:						
	a) 0	10110001001	b)	100010111001	c)	100110000110	d)	110001100001		
31.	The sin	The simplest equation that can be derived from the given K-map:								
		с с								
	ĀB	0 0								
	ĀВ	1 1								
	AB	1 1								
	AB	0 1								
	a) Y	= AB	b)	Y = A + B	c)	Y = AC + B	d)	Y = AB + C		
32.	How many flip-flops are required to implement a mod 200 counter?									
	a) 7		b)	20	c)	8	d)	200		
33.	On the fifth clock pulse, a 4-bit Johnson sequence is $Q0 = 0$, $Q1 = 1$, $Q2 = 1$, and $Q3 = 1$. On the									
	sixth clock pulse, the sequence is									
	a) Q	$q_0 = 1, Q_1 = 0,$	b)	$Q_0 = 1, Q_1 = 1,$	c)	$Q_0 = 0, Q_1 = 0,$	d)	Q0 = 0, Q1 = 0,		
	Q	$Q_2 = 0, Q_3 = 0$		$Q_2 = 1, Q_3 = 0$		$Q_2 = 1, Q_3 = 1$		Q2 = 0, Q3 = 1		
34.	Using Moore state machine, how many states are minimum required to construct a state machine for									
	sequen	ce detector that	detect	ts the sequence 1001	l (non	-overlapping)				
	a) 4		b)	3	c)	8	d)	5		
35.	In carbon microphones, a variation in which of the following parameter was correlated to find out									
	Sound	Pressure Level	(SPL)	?						
	a) In	ductance	b)	Resistance	c)	Capacitance	d)	None of these		
36.	An example of a flow sensor not based on Bernoulli's Principle									
	a) V	enturimeter	b)	Orifice plate	c)	Pivot tube	d)	Anemometer		
37.	Factor to be considered while selecting transducer: it should haveinput impedance and									
		output impedance, to avoid loading effect								
	a) La in lo	ow input npedance and ow output	b)	Low input impedance and high output	c)	High input impedance and low output	d)	High input impedance and high output		
38.	Gymbe	els are used for		mpedance		mpedance		mpedance		
•	a) In ro	nproving ptational speed	b)	Supporting gyro wheel	c)	As damping agent	d)	None of the above		

F192200

Pages:6

39. Dead weight gauge is used for the measurement of pressure of

U

Bernoulli's Equation is a mathematical expression of: 40. The ratio of b) Friction loss as c) Potential and d) Fluid density and a) kinetic to fluid moves kinetic energies in compressibility in viscous forces in a flow stream through a rough a flow stream pipe a restriction 41. A 24 Ω resistor, an inductor with a reactance of 120 Ω , and a capacitor with a reactance of 120 Ω are in series across a 60 V source. The circuit is at resonance. The voltage across the inductor is 30 V b) 300V c) 330V d) 270V a) 42. The Thevenin's equivalent of the network shown in figure is 2452 W W o a 125 60 36V oh 4V, 48Ω 24V, 12 Ω 12V, 12 Ω c) $24V, 24\Omega$ a) b) d) 43. For parallel RLC circuit, which one of the following statements is NOT correct? The bandwidth The bandwidth of The bandwidth of d) At resonance, the b) a) c) of the circuit the circuit remains the circuit remains magnitude of input decreases if R is same if L is impedance attains same if L is its minimum increased increased increased values In the below circuit, find the current flowing through inductor L, if L = 5H44. 5Ω $S_{5\Omega}$ 25 V 2.5 + i 10 A2.5 A 5 A None of $t\Box e$ above b) d) a) c) 45. Which among the below specified assertions are precisely related to the conditions applicable for a path to be an improper subgraph? A. Incidence of a single branch at a terminating node B. Incidence of two branches at the remaining nodes a) A is true & B is b) A is false & B is c) Both A & B are d) Both A & B are false true true false 46. The principle of superposition cannot be applied to analyse a circuit for voltage response b) current response power response none of the above a) c) d)

F192200

c)

About 7000 bar

d)

About 2000 bar

Pages:6

About 5000 bar

U

a)

About 1000 bar

b)

F192200

Pages:6

- 47. Which of the following is not a correct statement for symmetrical two port network
 - a) A=D b) A'=D' c) AD-BC=1 d) None of the above
- 48. Which of the following has the lowest propagation delay time?

49. Which of the following are true regarding root locus plot?

a)	The value of K b) decreases from infinity to zero.	The root locus on c) the real axis always lies in a section of the real axis to the left of an even number of poles and zeros	The root locus d) begins at the poles and ends at the zero	None of these					
A moving iron type ammeter has far turns of thick wire so that									

a) Sensitivity is b) Damping is c) Scale is large d) Resistance is less high effective

50.