Reg No.:		Name:	_
	F	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY IFTH SEMESTER B.TECH DEGREE EXAMINATION(R&S), DECEMBER 2019)
		Course Code: CH305	
		Course Name: CHEMICAL REACTION ENGINEERING-I	
Max. Marks: 100 Duration: 3 Ho			
		Graph sheets may be provided PART A	
		Answer any two full questions, each carries 15 marks.	Marks
1	a)	Define the molecularity and order of a chemical reaction.	(2)
	b)	The rate constants of a certain reaction are 1.6×10^{-3} and 1.625×10^{-2} (s) ⁻¹ at 10° C	(5)
		and 30°C. Calculate the activation energy in KJ/mol.	
	c)	For the gas phase decomposition of azo methane, develop a mechanism and from	(8)
		it, derive a rate law.	
2	a)	Differentiate between elementary and non-elementary reaction with examples.	(4)
	b)	List the various factors affecting the rate of a chemical reaction.	(3)
	c)	Give detailed classifications of chemical reactions. Write examples for each	(8)
		classification	
3	a)	The decomposition of nitrous oxide is found to proceed as follows:	(12)
		$N_2 O \rightarrow N_2 + \frac{1}{2} O_2, -r_{N_2 O} = \frac{k_1 [N_2 O]^2}{1 + k' [N_2 O]}$	
		Suggest a mechanism to explain this rate. What is the order of this reaction with respect to $N_2\Omega^2$	
	b)	Explain Pseudo Steady State Hypothesis and write its applications	(3)
	,	PART B	
		Answer any two full questions, each carries 15 marks.	
4	a)	Derive the integral equation for a second order reaction with equimolar	(5)
		concentrations of the reactants.	
	b)	The half-life period for a certain first order reaction is 2.5×10^3 s. Determine the	(5)
		time taken for $\frac{1}{4}$ of the reactant to be left behind.	
	c)	After 8 minutes in a batch reactor, reactant (C_{A0} = 1 mol/liter) is 80%	(5)
		converted; after 18 minutes, conversion is 90%. Find a rate equation to	
		represent this reaction.	

5 a) Define an autocatalytic reaction. Give an example. (2)

(7)

(3)

(3)

b) The first-order reversible liquid reaction

 $A \rightleftharpoons R$, $C_{A0} = 0.5 \text{ mol/liter}$, $C_{R0} = 0$

takes place in a batch reactor. After 8 minutes, conversion of A is 33.3% while equilibrium conversion is 66.7%. Find the rate equation for this reaction.

- c) Find the first order rate constant for the disappearance of A in the gas reaction (6) A→1.6R if the volume of the reaction mixture, starting with pure A increases by 50% in 4 minutes. The total pressure within the system stays constant at 1.2 atm and the temperature is 25^oC.
- 6 a) Define space time and space velocity.
 - b) Derive the performance equation of a Mixed Flow Reactor. (5)
 - c) A plug flow reactor (2 m³) processes an aqueous feed (100 liter/min) containing (7) reactant A ($C_{A0} = 100 \text{ mmol/liter}$). This reaction is reversible and represented by

$$A \leftrightarrow R, -r_A = (0.04 min^{-1})C_A - (0.01 min^{-1})C_R$$

First find the equilibrium conversion and then find the actual conversion of A in the reactor.

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) Define recycle ratio and explain a recycle reactor.
 - b) Explain the graphical method of determining the conversion in the case of (7) unequal size mixed flow reactors connected in series.
 - c) An aqueous reactant stream (4 mol A/liter) passes through a mixed flow (10) reactor followed by a plug flow reactor. Find the concentration at the exit of the plug flow reactor if in the mixed flow reactor $C_A = 1$ mol/liter. The reaction is second-order with respect to A, and the volume of the plug flow unit is three times that of the mixed flow unit.
- 8 a) Write a note on bioreactors (5)
 - b) Derive the Michaelis Menton equation for enzymatic reactions. (15)
- 9 a) With neat sketch, explain membrane Reactors. Write the different types of (8) membrane reactors.
 - b) Explain the phases of bacterial cell growth. (5)
 - c) Cell growth rate is expressed in terms of Monod Equation. Write the equation (4) and specify each term on the equation.
 - d) Explain reactive distillation with an example. (3)
