Reg No.:		D.: Name:	_
	I	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIFTH SEMESTER B.TECH DEGREE EXAMINATION(R&S), DECEMBER 2019	9
		Course Code: AE363	
		Course Name: VLSI CIRCUIT DESIGN	
М	ax. N	Marks: 100 Duration: 3	Hours
		PART A Answer any two full questions, each carries 15 marks.	Marks
1	a)	With the help of neat diagrams explain NMOS IC process	(8)
	b)	Explain different narrow channel effects of MOSFET.	(7)
2	a)	Draw and explain the operation of an ion implantation system.	(4)
	b)	Compare CMOS technology with BiCMOS technology.	(3)
	c)	Prove that saturation drain current (I_D sat.) of MOSFET depends only on gate source voltage V_{GS} .	(8)
3	a)	Explain GaAs technology with the help of necessary diagrams.	(7)
	b)	With C-V curve explain the capacitance in the accumulation, depletion and	(8)
		inversion region of MOS device.	
		PART B	
		Answer any two full questions, each carries 15 marks.	
4	a)	Implement the Boolean function $y = (A + B + C) + DEF$ using CMOS logic and Pseudo NMOS logic.	(9)
	1 \		(8)
	b)	Explain layout design rules for CMOS logic.	(5)
_	c)	What are the properties of stick diagrams.	(2)
5	a)	Draw the circuit of a CMOS inverter and explain its transfer characteristics.	(7)
	b)	Draw the circuit diagram and stick diagram of 2 input CMOS NOR gate.	(8)
6	a)	List out λ (lambda) based design rules for CMOS technology.	(7)
	b)	Explain Domino logic and np CMOS logic with examples.	(8)
		PART C	
7	a)	Answer any two full questions, each carries 20 marks. Explain constant voltage scaling and its influence on different device parameters.	(10)
	b)	Write short notes on synchronizers.	(10)
8	a)	Write short notes on Passive& Active bus lines.	(5)

E192113

b)	Explain any one method of two phase clock generation.	(5)
c)	Explain about stack borrowing technique in latch based clocking.	(10)
a)	Explain Dual rail coding used to generate completion signal.	(10)
b)	Explain the impact of clock skew in VLSI system with a neat figure.	(10)
	 b) c) a) b) 	 b) Explain any one method of two phase clock generation. c) Explain about stack borrowing technique in latch based clocking. a) Explain Dual rail coding used to generate completion signal. b) Explain the impact of clock skew in VLSI system with a neat figure.

9