Reg No.:_____
 Name:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SECOND SEMESTER B.TECH DEGREE EXAMINATION(S), DECEMBER 2019

Course Code: MA102

Course Name: DIFFERENTIAL EQUATIONS

Max. Marks: 100 Duration: 3 Hours

PART A

Answer all questions, each carries 3 marks

1	Find a general solution of the ordinary differential equation $y'' + y = 0$	(3)
2	Reduce to first order and solve. $yy'' = 3(y')^2$.	(3)
3	Find the particular integral of $y'' - 4y' - 5y = 4 \cos 2x$.	(3)
4	Using a suitable transformation, convert the differential equation $(x^2D^2 + xD + 1)y = logx$ into a linear differential equation with constant coefficients.	(3)
	constant coefficients.	

- If f(x) is a periodic function of period 2π defined in $[-\pi, \pi]$. Write down Euler's Formulas a_0 , a_n , b_n for f(x).
- Find the half range Fourier cosine series of the function f(x) = x in the range 0 < x < 2.
- 7 Find the PDE by eliminating arbitrary function φ from $xyz = \varphi(x + y + z)$. (3)
- 8 Solve $(D+2D')(D-3D')^2z = 0.$ (3)
- Write any three assumptions involved in the derivation of one dimensional wave Equation. (3)
- A tightly stretched string of length l is fixed at both ends and pulled from its mid point to a height h and released from rest from this position. Write down the initial and boundary conditions. (3)
- Write all possible solutions of one dimensional heat equation. (3)
- Find the steady state temperature distribution in a rod of length l if the ends are kept at $0^{\circ}C$ and $100^{\circ}C$. (3)

PART B

Answer six questions, one full question from each module Module 1

- 13 a) Solve y'' 2y' + y = 0, y(0) = 1, y'(0) = 2. (6)
 - b) Find a basis of solutions of the ODE $(x^2 x)y'' xy' + y = 0$, if $y_1 = x$ is a (5)

solution.

OR

14 a) Solve the ordinary differential equation y''' - 3y'' - 4y' + 6y = 0. (6)

b) Solve the ordinary differential equation xy'' + 2y' + xy = 0, given that $y_1 = \frac{\sin x}{x}$ is a solution. (5)

Module 1I

15 a) By the method of variation of parameters, solve y'' + 4y = tan2x. (6)

b) Solve $y'' + 2y = x^2 e^{3x}$. (5)

OR

16 a) Solve $(x+3)^2y'' - 4(x+3)y' + 6y = 3x$. (6)

b) Solve $x^2y'' - 4xy' + 6y = x^5$. (5)

Module 1II

17 a) Find the Fourier series of f defined by $f(x) = x - x^2$ in (-1,1). (6)

b) Expand f(x) = c in the half range sine-series in $0 \le x \le \pi$. (5)

OR

Obtain Fourier series for the function $f(x) = |\cos x|, -\pi \le x \le \pi$. (11)

Module 1V

19 a) Solve $r + s + 2t = e^{x+y}$. (6)

b) Find the general solution of $x^2(y-z)p + y^2(z-x)q = (x-y)z^2$. (5)

OR

20 a) Solve $(D^3 + D^2D^2 - D^2^2 - D^2^3)z = e^x \cos 2y$ (6)

b) Solve $(D^2 + 3DD' + 2D'^2)z = x^2y^2$ (5)

Module V

A uniform elastic string of length 60 cm is subjected to a constant tension of 2 Kg. If the ends are fixed, the initial displacement $u(x,0) = 60x - x^2, 0 < x < 60$ and the initial velocity is zero, find the displacement function u(x,t)

OR

Find the deflection of the vibrating string which is fixed at the ends x = 0 and x = 2 and the motion is started by displacing the string into the form $\sin^3(\frac{\pi x}{2})$ and released it with zero initial velocity at t = 0.

Module VI

Find the temperature distribution in a rod of length 2m whose endpoints are maintained at temperature zero and initial temperature is $f(x) = 100(2x - x^2)$. (10)

OR

A rod of length 30cm has its ends A and B kept at $20^{\circ}C$ and $80^{\circ}C$ respectively until steady state temperature prevails. Suddenly the temperature at A is raised to $60^{\circ}C$ and the end B is decreased to $40^{\circ}C$. Find the temperature distribution in the rod at time t.
