Reg. No. \qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

 FIRST SEMESTER REGULAR MCA DEGREE EXAMINATION, DEC 2016
Course Code: RLMCA 103
 Course Name: DISCRETE MATHEMATICS

PART A

Answer All Questions. Each question carries 3 marks

1. Define equivalence relation with suitable example.
2. Let R is a relation defined on a set of positive integers such that $\forall x, y \in$ $Z^{+}, x R y$ iff $|x-y|<7$.

Determine R is an equivalence relation.
3. How many 13 letter character can be formed from the letters of the word
"ASSASSINATION"?
4. Find the number of diagonals of a polygon having ' n ' sides.
5. Define a) Regular graph b) Bipartite graph.

Give an example of 3 regular bipartite graphs.
6. Define isomorphism. Check whether the given below are isomorphic.

7. Symbolize the sentence every integer is either positive or negative.
8. Show that $\forall x(P(x) \rightarrow Q(x)) \wedge \forall x(Q(x) \rightarrow R(x))=>\exists x(P(x) \rightarrow R(x))$

PART B

Answer All Questions. Each question carries 6 marks

MODULE 1

9. Let $\mathrm{U}=\{1,2,3,4,5,6,7,8,9,10\}, \mathrm{A}=\{2,4,6,8\}, \mathrm{B}=\{1,3,5,7\}, \mathrm{c}=\{1,4,8,10\}$. Verify Demorgan's laws.

OR

10. Write warshall's algorithm. Use it to find the the transitive closure of the relation. $\{(1,3),(3,2),(2,4),(3,1),(4,1)$ on $(1,2,3,4)\}$

MODULE 2

11. Write GCD of 858 and 325 as a linear combination of thetwo numbers.

OR

12. Solve the set of simultaneous congruence. $x \equiv 2(\bmod 3) ; x \equiv 3(\bmod 5) ; x \equiv$ $3(\bmod 7)$

MODULE 3

13. Students are awarded for grades A, B, C \& D. How many students must be there in a group, so that at least 6 students get the same grade?
a. b) How many positive integers not exceeding 100 are divisible by 4 or 6 .

OR

14. How many integers between 100 and 999 inclusive a) are not divisible by 4 b) are divisible by 3 or 4 c) are divisible by 3 but not by 4 .

MODULE 4

15. Solve the recurrence relation. $2 a_{n}=7 a_{n-1}-3 a_{n-2}: a_{0}=2, a_{1}=5$

OR
16. Solve the recurrence relation $a_{n+2}-8 a_{n+1}+16 a_{n}=8\left(5^{n}\right)+6\left(4^{n}\right): n \geq$ 0 and $a_{0}=12, a_{1}=5$

MODULE 5

17. Define (a) Adjacency matrix (b) Incidence matrix. Give Adjacency the matrix and Incidence matrix of the graph

OR
18. Prove that for a planar $v-e+r=2$, where $|V|=v ;|E|=e ; r=n u$ mberof regions

MODULE 6

19. Prove that $R \wedge(P \vee Q)$ is a valid conclusion from the premises $P \vee Q, Q \rightarrow R$, $\mathrm{P} \rightarrow \mathrm{M}, 1 \mathrm{M}$.

OR

20. Show the validity of following argument $(A \rightarrow B) \wedge(A \rightarrow C), 1(B \wedge C), D \vee A=>D$
