APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER M.TECH DEGREE EXAMINATION Mechanical Engineering (Machine Design) 04 ME6501-Advanced Engineering Mathematics

Time: 3 hrs

Max. Marks: 60

PART A

(Answer all questions. Each question carry 3 marks).

- 1. Find the extremals of the functional $\int_{x_0}^{x_1} \frac{y'^2}{x^3} dx.$ (3)
- 2. Express $f(x) = x^4 + 3x^3 x^2 + 5x 2$ in terms of Legendre Polynomials?. (3)
- 3. Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ with boundary conditions $u(x,0) = 3\sin n\pi x$, u(0,t) = 0 and (3) u(l,t) = 0, where 0 < x < 1, t > 0?
- 4. Classify the equation $U_{xx} + 4U_{xy} + 4U_{yy} U_x + 2U_y = 0$ (3)
- 5. Show that the Kronecker delta is a mixed tensor of order two. (3)
- 6. A covariant tensor has components $x + y, xy, 2z y^2$ in Cartesian co-ordinate system. Find (3) its components in spherical co-ordinates.
- 7. Explain the fundamental principles of design of experiments (3)
- 8. What is Latin square design? Under what conditions can this design be used? (3)

PART B (Each full question carries 6 marks).

9. Find the curves on which the functional $\int_0^1 [y'^2 + 12xy] dx$ with y(0) = 0, y(1) = 1 can be (6) extremised?

OR

10. Show that the functional

$$\int_0^{\frac{\pi}{2}} \left(2xy + \left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 \right) dt$$

such that $x(0) = 0, x\left(\frac{\pi}{2}\right) = 1, y(0) = 0, y\left(\frac{\pi}{2}\right) = 1$ is stationary for $x = \sin t$, $y = \sin t$?

11. Solve the series
$$(1 - x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + 4y = 0$$
 (6)

Page 1 of 2

(6)

12. Solve in the series equaion $9x(1-x)\frac{d^2y}{dx^2} - 12\frac{dy}{dx} + 4y = 0$ (6)

13. A string is stretched and fastened to two points l apart. Motion is started by displacing (6) the string in the form $y = a \sin(\frac{\pi x}{l})$ from which it is released at time t = 0. Show that the displacement of any point at a distance x from one end at time t is given by $y(x,t) = a \sin(\frac{\pi x}{l}) \cos(\frac{\pi ct}{l})$

OR

- 14. The ends A and B of a rod 20 cm long have the temperature at $30^{0}C$ and $80^{0}C$ until steady (6) state prevails. The temperature of the ends are changed to $40^{0}C$ and $60^{0}C$ respectively. Find the temperature distribution in the rod at time t.
- 15. Solve by Crank Nicholson method the equation $U_{xx} = 16U_t$, 0 < x < 1, t > 0 subject to the (6) conditions U(x,0) = 0, U(0,t) = 0 and U(1,t) = 100t for 1 time step taking $h = \frac{1}{4}$

OR

- 16. The transverse displacement u of a point at a distance x from one end and at any time t of (6) a vibrating string satisfies the equation $\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$, with the boundary conditions u = 0 at x = 0, t > 0 and u = 0 at x = 4, t > 0 and initial conditions u = x(4 x) and $\frac{\partial u}{\partial t} = 0$ at t = 0, $0 \le x \le 4$. Solve this equation numerically for one half period of vibration, taking $h=1, k=\frac{1}{2}$
- 17. Find the components of first and second fundamental tensors in spherical co-ordinates. (6)

OR

- 18. Prove that (i)the contraction of the tensor A_q^p is an invariant (ii)The contraction of the outer product of the tensor A^p and B_q is also an invariant
- 19. The following are the defective pieces produced by four operators working in turn on four (6) different machines

Machine	Operator					
	B1	B2	B3	B4		
A1	34	28	33	29		
A2	31	24	35	22		
A3	27	20	43	72		
A4	28	28	29	26		

Perform analysis of variance at 0.05 level of significance to ascertain whether variability in production is due to variability in operator's performance or machine's performance

OR

20. A manufacturer of machine parts considering one of the 4 machines currently in the mar(6) ket. The following is the daily output on 5 randomly selected days for each machine:

Machine I	72	50	68	65	60				
Machine II	62	70	66	64	78				
Machine III	68	72	74	70	66				
Machine IV	64	72	68	68	58				
Do the machines have an equal output ? Use $\alpha=0.01$									

(6)