APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

First Semester m.tech Degree Examinations
Branch: Electrical \& Electronics Engineering
(Specialization: Power Systems)
04MA 6303 - Applied Mathematics

(Note: Non-programmable calculators may be permitted)

Time: Three hrs
Max. Marks: 60

PART A

(Answer all questions. Each question carries 3 marks)

1. Evaluate the inverse Z transform of $\frac{z^{2}}{(z-a)(z-b)}$
2. Find Fourier cosine transform of $e^{-a x}$.
3. If $I=\int_{a}^{b} \sin ^{2} x \tan \frac{y}{x} d x$, then solve I.
4. Form the differential equation corresponding to $y(x)=\int_{0}^{x}(x+t) y(t) d t+1$.
5. Prove that arithmetic mean of an arbitrary distribution will be an unbiased estimator of the population mean.
6. Write the standard five point formule for solution of Laplace's equation using a four-node mesh grid.
7. Check the independence of $\{(1,1,2),(-1,0,1),(0,-2,1)\}$ in \mathbb{R}^{3}.
8. Find the dimension and basis of $S \subset \mathbb{R}^{3}$, if $S=\{(x, y, z) \mid x-y-7 z=0\}$

PART B
 (Answer all questions. Each full question carries 6 marks)

9. Find Fourier Sine transform of $f(x)=e^{-|x|}$. Hence show that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x \sin m x}{1+x^{2}}=\frac{\pi e^{-m}}{2}, m>0 \tag{6}
\end{equation*}
$$

OR
10. Solve $y_{n+2}+6 y_{n+1}+9 y_{n}=5^{n}, y_{0}=y_{1}=0$ using Z transform.
11. Find the curve passing through the points $P\left(x_{1}, y_{1}\right)$ and $\left(Q\left(x_{2}, y_{2}\right)\right.$ which when rotated about $x-$ axis gives minimum surface area.
12. Prove that the shortest distance between two points in a plane is a straight line.
13. A man chooses a car , train or bus to reach his office. From the past informations it was found that the transition probability matrix is given by $\left(\begin{array}{lll}0.2 & 0.5 & 0.1 \\ 0.3 & 0.2 & 0.5 \\ 0.1 & 0.2 & 0.5\end{array}\right)$ The colums are respectively reprecents the probability for choosing a car, train and bus respectively in current day. In the first day of his travel, he tossed a fair coin and decided to catch a train if turn a head and to choose a bus if a tail turned. Use this assumption estimate the chance for choosing a car after second day and the long run probability measures for the choice of transportation.

OR

14. Discuss briefly the Fisher's characteristics of a good estimate.
15. Show that $y=2-x$ is a solution of $\int_{0}^{x} e^{x-t} y(t) d t=e^{x}+x-1$.

OR
16. Solve $y(x)=3 x^{2}+\int_{0}^{x} \cos (x-t) y(t) d t$.
17. Fit a least square trend line to the data $y(0)=3, y(1)=5, y(2)=7, y(3)=12, y(4)=19$.

OR
18. Classify the Poisson's equation $\nabla^{2} U=-10\left(x^{2}+y^{2}+10\right)$ and solve it numerically over the square mesh with $U=0$ on the boundary and mesh length=1.
19. Prove that set of all $m \times n$ real matrices over the field of real numbers form a vector space.

OR
20. Define an inner product space. Check whether $\langle x, y\rangle=x_{1} y_{1}-x_{2} y_{1}-x_{1} y_{2}+4 x_{2} y_{2}$ defines an inner product in \mathbb{R}^{2}.

