APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER M. TECH DEGREE EXAMINATION
 Electronics And Communication Engineering

 (Telecommunication)

 (Telecommunication)}

04 EC6803 - Random Processes and Applications

Time: 3 Hours
Max. Marks : 60
PART A
(Answer All questions. Each question carries 3 marks)

1. State and prove Baye's theorem on inverse probability.
2. If the joint pdf of (X, Y) is given by $\mathrm{f}_{\mathrm{xy}}(\mathrm{X}, \mathrm{Y})=\frac{x+y}{21} ; \mathrm{x}=1,2,3$ and $\mathrm{y}=1,2$. Find marginal pdfs?
3. Let X , Y be i.i.d random variables with $\mathrm{f}_{\mathrm{x}}(\mathrm{X})=e^{-x} \mathrm{u}(\mathrm{x})$. Let $\mathrm{Z}=\max (\mathrm{X}, \mathrm{Y})$. Find $\mathrm{F}_{\mathrm{Z}}(\mathrm{Z})$?
4. Define power spectral density. Find the power spectral density for the exponential auto correlation function $\mathrm{R}_{\mathrm{xx}}(\tau)=\exp (-\alpha|\tau|) ;-\infty<\tau<\infty ; \alpha>0$ is a parameter.
5. If X is a poisson random variable with parameter $a>8$. Find $E[X]$?
6. If X is an arbitrary random variable with mean \bar{X} and finite variance σ^{2}. Prove that $\mathrm{P}[|\mathrm{X}-\bar{X}| \geq \delta] \leq \frac{\sigma^{2}}{\delta^{2}}$; for any $\delta>0$.
7. Define sure convergence and almost sure convergence of a random sequence.
8. State Karhunen-Loeve expansion.

PART B

(Each full question carries 6 marks)
9. The pdf of a random variable is given by $f(x)=\left\{\begin{array}{r}k e^{-2 x}, \\ 0>0 \\ 0,\end{array} \leq 0\right.$. Find (i) Value of k
(ii) $\mathrm{P}[0<\mathrm{X}<3]$
(iii) $\mathrm{P}[\mathrm{X}>0]$
(iv) $F(X)$

OR
10. If X is a normal variate with mean 20 and S.D 5. Find the probability that (i) $P[X>23]$ (ii) $\mathrm{P}[|\mathrm{X}-20|>5]$
11. The joint pdf of two random variables is given by $\mathrm{f}_{\mathrm{xy}}(\mathrm{X}, \mathrm{Y})=\frac{1}{2 \pi} \exp \left\{\frac{-1}{2}\left[x^{2}+y^{2}\right]\right\}$ for $-\infty<X, Y<\infty$. Compute the probability that $\{\mathrm{X}, \mathrm{Y}\}$ are restricted to (i) a 2 x 2 square (ii) a unit circle

OR
12. Determine the pdf of $\mathrm{Y}=\operatorname{Sin} \mathrm{X}$, where X is a uniform r.v on $(-\pi, \pi)$.
13. Let X be a binomial r.v. Find first and second moment of X

OR
14. Let $\mathrm{X} \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$. Find (i) mgf (ii) $\theta^{(1)}(0)$ and (iii) $\theta^{(2)}(0)$
15. Consider a random process $X(t)=A \cos (w t+\theta)$, where A and θ are independent and uniform r.v over $(-k, k)$ and $(-\pi, \pi)$ respectively. Find (i) mean of $X(t)$ (ii) Correlation function of $X(t)$
(iii) Covariance function of $\mathrm{X}(\mathrm{t})$ and (iv) Variance of $\mathrm{X}(\mathrm{t})$.

OR

16. A random vector $X=\left(X_{1}, X_{2}, X_{3}\right)^{T}$ has covariance matrix $K_{x}=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & 0 \\ 1 & 0 & 2\end{array}\right]$. Design a non-trivial transformer that will generate from X , a new random vector Y whose components are uncorrelated.
17. Let X be a poisson r.v with parameter $\mathrm{a}>0$. Compute the Chernoff bound for $\mathrm{P}[\mathrm{X} \geq \mathrm{K}]$, where $\mathrm{K}>\mathrm{a}$.

OR

18. Consider a random sequence $\mathrm{X}[\mathrm{n}]=\sum_{m=1}^{n} \alpha^{n-m} \mathrm{~W}[\mathrm{~m}] ; \mathrm{n} \geq 1$, with $|\alpha|<1$. Let $\mathrm{W}[\mathrm{n}]$ be a Bernoulli random sequence with $\mathrm{W}[\mathrm{n}]=1$ with probability p and $\mathrm{W}[\mathrm{n}]=0$ with probability $\mathrm{q}=1-\mathrm{p}$. Find mean and variance of $X[n]$?
19. Consider the WSS process $\mathrm{X}(\mathrm{t})=\mathrm{A} \operatorname{Cos}\left(2 \pi \mathrm{f}_{0} \mathrm{t}+\theta\right)$; $-\infty<t<\infty$, where $\mathrm{A} \sim \mathrm{N}(0,1)$ and θ is uniformly distributed over $[-\pi, \pi]$ and both A and θ are independent. Determine whether (i) $\mathrm{X}(\mathrm{t})$ is ergodic in mean (ii) $\mathrm{X}(\mathrm{t})$ is ergodic in power and (iii) $\mathrm{X}(\mathrm{t})$ is ergodic in correlation

OR

20. Let the WSS random process $\mathrm{X}(\mathrm{t})$ be a m.s periodic with period T , where $\mathrm{X}(\mathrm{t})=\sum_{n=-\infty}^{\infty} A_{n} e^{j w_{0} n t}$ with $w_{0}=\frac{2 \pi}{T}$ and random fourier coefficients $\mathrm{A}_{\mathrm{n}}=\frac{1}{T} \int_{\frac{-T}{2}}^{\frac{T}{2}} X(\tau) e^{-j w_{0} n \tau} \mathrm{~d} \tau$. Show that (i) Mean $\mathrm{E}\left[\mathrm{A}_{\mathrm{n}}\right]=\mu_{x} \delta[\mathrm{n}]$
(ii) Correlation $\mathrm{E}\left[\mathrm{A}_{\mathrm{n}} \mathrm{A}_{\mathrm{m}}{ }^{*}\right]=\alpha_{n} \delta[\mathrm{~m}-\mathrm{n}]$
(iii)Mean-square value $\alpha_{n}=\frac{1}{T} \int_{\frac{-T}{2}}^{\frac{T}{2}} R_{x x}(\tau) e^{-j w_{0} n \tau} \mathrm{~d} \tau$.
