Reg No.:	Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

9

FII	RST	SEMESTER B.TECH DEGREE EXAMINATION(2019 SCHEME), DECEMBE	R 2019
		Course Code: PHT110	
		Course Name: ENGINEERING PHYSICS B	
Ma	N <i>I</i>	(2019-Scheme)	2 11
Ma	X. IVI	arks: 100 Duration: PART A	3 Hours
		Answer all questions, each carries 3 marks.	
1		Derive the differential equation of a damped harmonic oscillator	(3)
2		Find the equation of a progressive wave of amplitude 2cm, frequency 1 Hz	(3)
		and velocity 20 cm/s moving along positive x-axis.	
3		How will you test the planeness of a surface using air wedge?	(3)
4		Distinguish between Fresnel and Fraunhofer classes of diffraction.	(3)
5		What is de Broglie hypothesis of matter waves? Write the equation of	(3)
		de Broglie wave length	
6		Give three medical applications of nanotechnology.	(3)
7		What is meant by intensity of sound? Give the equation connecting	(3)
		intensity and amplitude.	
8		What are ultrasonic waves? Mention any fourproperties of them.	(3)
9		What is an optical resonator? Explain its role in laser emission.	(3)
10		Discuss the advantages of optical fibre over conventional transmission lines.	(3)
		PART B	
		Answer one full question from each module, each question carries 14 marks	
11	a)	Module-I What is amplitude resonance? Give any two examples. Derive an expression	(10)
		for resonant frequency. What is sharpness of resonance?	
	b)	In the case of a forced harmonic oscillator, the amplitude of vibrations	(4)
		increases from 0.05 mm at very low frequencies to a value 7.5mm at the	
		frequency 210Hz. Find Q- factor, damping constant and relaxation time.	
12	a)	Obtain an expression for fundamental frequency of transverse vibrations in a	(10)
		stretched string.	
	b)	A wave of wavelength 30cm is travelling through a 300m long wire whose	(4)
		mass is 15kg. If the wire is under tension of 1kN, compute the speed and	

frequency of the wave.

Module-II

13	a)	Explain how Newton's rings are formed? Show that the radius of dark ring	(10
		formed by Newton's rings is proportional to square root of the order of the	
		ring.	

- b) Light of wavelength **5893Å** is reflected at nearly normal incidence from a soap film of refractive index **1.42**. What is the least thickness of the film that will appear (i) dark and (ii) bright?
- 14 a) What is a plane transmission grating? Derive the grating equation. What is

 Rayleigh's criterion for spectral resolution? (10)
 - b) What is the highest order spectrum which may be obtained with a light of wavelength **650 nm** by means of a plane transmission grating having **5000 lines per cm?**

Module-III

- 15 a) Derive Schrodinger's time dependent equation and hence obtain time (10) independent equation.
 - b) Explain the absence of electron in the nucleus. (4)
- 16 a) Write the significance of material at nanoscale and explain the quantum confinement in nanomaterials. (10)
 - b) Discuss quantum mechanical tunnelling and give two examples. (4)

Module-IV

- 17 a) Explain any six factors affecting acoustics of a hall and give their remedial (9) measures.
 - b) An auditorium has dimensions **45m X 10m X 8m**. The average absorption coefficients of wall, ceiling and floor are **0.8**, **0.4** and **0.5** respectively. Evaluate reverberation time of the hall.
- 18 a) What is inverse piezoelectric effect? How is ultrasonic wavesdetected using piezoelectric effect? What is NDT? Explain any one NDT method.
 - b) Calculate the fundamental frequency of vibration of quartz crystal of thickness **8mm** at resonance if its Young's modulus is $Y = 7.9 \times 10^{10} N/m^2 \text{ and density} = 2650 kg/m^3.$

Module-V

19 a) Explain the construction and working of a ruby laser with schematic and energy level diagrams. (10)

- b) What are Einstein's coefficients? Give their significance in lasing action. (4)
- 20 a) Explain total internal reflection. With the help of a neat diagram derive (10) expression for numerical aperture of a step index fibre.
 - b) An optic fibre has an acceptance angle of **45**⁰. If the refractive index of core is **1.57**, calculate numerical aperture and refractive index of cladding.
