APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER M.TECH DEGREE EXAMINATION Civil Engineering
 (Geomechanics And Structures)

04 CE 6301 - Applied Mathematics for Civil Engineers

PART A

Answer all questions.

Each question carries 3 marks

1. Write the Rodrigue's formula and hence obtain $\mathrm{P}_{2}(\mathrm{x})$.
2. Find the Fourier transform of $f(x)=\left\{\begin{array}{l}1 \text { for }|x|<1 \\ 0 \text { for }|x|>1\end{array}\right.$.
3. Show that kronecker delta is a mixed tensor of order two.
4. Show that $\mathrm{y}(\mathrm{x})=2-\mathrm{x}$ is a solution of the integral equation $\int_{0}^{x} e^{x-t} y(t) d t=e^{x}+x-1$.
5. Using D'Alembert's method, find the deflection of a vibrating string of unit length having fixed ends, with initial velocity zero and initial deflection $f(x)=a \sin ^{2} \pi x$
6. Obtain Monge's subsidiary equations to solve a partial differential equation of the form $\mathrm{Rr}+\mathrm{sS}+\mathrm{Tt}=\mathrm{V}$.
7. Find the approximate value of $\int_{0}^{1} \frac{\sin x}{x} d x$ using three-point rule.
8. Apply Gauss three-point formula to evaluate $\int_{0.2}^{1.5} e^{-t^{2}}$

PART B

Each question carries 6 marks
9. Derive the recurrence formulae

$$
\begin{gathered}
J_{n}(\mathrm{x})=\frac{x}{2 n}\left[J_{n-1}(\mathrm{x})+J_{n+1}(\mathrm{x})\right] \\
\text { OR }
\end{gathered}
$$

10. State and prove the Orthogonality property for Bessel functions.
11. Solve by the method of transforms $t y^{\prime \prime}+2 y^{\prime}+t y=\sin t$ given $y(0)=1$.

OR

12. Solve the equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}(\mathrm{x}>0, \mathrm{t}>0)$ subject to the conditions
i) $u=0$, when $x=0, t=0$
ii) $u=\left\{\begin{array}{c}1,0<x<1 \\ 0, x \geq 1\end{array}\right.$
iii) $u(x, t)$ is bounded
13. A co-varient tensor has components $x y, 2 y-z^{2}, x z$ in Cartesian co-ordinate system.

Find its components in spherical co-ordinates.
OR
14. Show that $a_{i j} A^{k j}=\Delta \delta_{i}^{k}$ where Δ is a determinant of order three and $A^{i j}$ are cofactors of $a_{i j}$.
15. Find the integral equation corresponding to the boundary value problem $y^{\prime \prime}(x)+2 y(x)=0$, given that $y(0)=y(1)=0$.

$$
=\quad O R
$$

16. Using the method of successive approximations solve the integral equation

$$
y(x)=1+\lambda \int_{0}^{1} x t y(t) d t
$$

17. Solve the Laplace eqation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ subject to the conditions $\mathrm{u}(0, \mathrm{y})=\mathrm{u}(\mathrm{l}, \mathrm{y})=\mathrm{u}(\mathrm{x}, 0)=0$ and $\mathrm{u}(\mathrm{x}, \mathrm{a})=\sin \frac{n \pi x}{l}$

OR

18. Solve the partial differential equation $\mathrm{r}=a^{2} \mathrm{t}$.
19. Solve the equations $x^{2}+y^{2}=11$ and $y^{2}+x=7$, start with the approximate solution (3.5, -1.8).

OR

20. Solve $\nabla^{2} u=0$ under the conditions $(h=1, k=1) u(0, y)=0, u(4, y)=12+y$ for $0 \leq y \leq 4$, $\mathrm{u}(\mathrm{x}, 0)=3 \mathrm{x}, \mathrm{u}(\mathrm{x}, 4)=\mathrm{x}^{2}$ for $0 \leq x \leq 4$.
