18103231

(**Pages : 3**)

Reg. No.....

Name.....

B.A. DEGREE (C.B.C.S.) EXAMINATION, JUNE 2018

Second Semester

B.A. Corporate Economics (Model III)

Core Course – EC 2CRT 06 – MATHEMATICS FOR ECONOMIST – II

(2017 Admission onwards)

Time : Three Hours

Maximum: 80 Marks

Part A

Answer any **ten** questions. Each question carries 2 marks.

- 1. Define Derivatives.
- 2. What do you mean by Rectifiable curves?
- 3. What do you mean by Scalar Matrix?
- 4. What is meant by inverse of matrix?
- 5. What is null set?
- 6. If A = {1, 3, 5, 7, 9}, B = {2, 4, 6, 8, 10}, C = {3, 4, 7, 8, 11, 12}. Show that (A \cup B) \cup C = A \cup (B \cup C).
- 7. State any two assumptions in Transportation Technique.
- 8. Write a short note on North West Corner Rule.
- 9. Distinguish between feasible and basic feasible solutions.
- 10. What are unbalanced transportation problems?
- 11. Cite any two areas where assignment technique is applied.
- 12. What are travelling salesmen problems?

 $(10 \times 2 = 20 \text{ marks})$

Part B

Answer any **six** questions. Each question carries 5 marks.

- 13. How will be solve maximisation problems using assignment techniques?
- 14. Explain some of the areas where Transportation Techniques are employed.
- 15. Write a note on Vogel's approximation method.
- 16. Write a note on differentiation of vector valued functions.

17. Write a short note on : (a) Equality of Sets ; (b) Equivalent sets ; and (c) Super set.

18. If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & -2 \\ 0 & 4 \\ 3 & 1 \end{bmatrix}$.

Find the matrix X such that A + B - X = 0.

19. Solve the equation :

	0	1	5		[1	2	3	
<i>x</i> +	1	0	4	=	2	3	1	
	2	-6	8		3	2	1	

20. If A = {1, 2, 3}, B = (3, 4, 5}, C = {1, 3, 5}. Prove that A – (B \cup C) = (A – B) \cap (A – C).

21. Distinguish between Assignment problems and Transportation problems.

 $(6 \times 5 = 30 \text{ marks})$

Part C

Answer any **two** questions. Each question carries 15 marks.

22. Represent the following using Venn diagrams :

- (a) $A \cap B$.
- (c) $A \cap (B \cup C)$.

(d) $(A \cup B) \cap (A \cup C)$.

(b) $A \cup (B \cup C)$.

(e) $A - (B \cap C)$.

23. Give the matrices :

	$\lceil 2 \rceil$	3	5		5	-9	6	
A =	5	4	2	and B =	2	3	-5	
	2	5	9		4	-9	7	

Find (i) A + B; (ii) A - B.

24. A company is faced with the problem of assigning five jobs to six different machines. The costs are estimated as follows (hundreds of rupees).

			Jobs		
	1	2	3	4	5
1	2.5	5	1	6	1
2	2	5	1.5	7	3
3	3	6.5	2	8	3
4	3.5	7	2	9	4.5
5	4	7	3	9	6
6	6	9	5	10	6

Solve the problem assuming that the objectives is to minimise total cost.

25. Solve the following Transportation Problem to maximise profit :

Profit in Rs./Unit

Distribution

		Α	В	С	D	Supply
	1	15	51	42	33	23
Source	2	80	42	26	81	44
	3	90	40	66	60	33
Demand		23	31	16	30	

 $(2 \times 15 = 30 \text{ marks})$

45.2