_	

QP CODE: 18103828

Reg No	:	******
Name	:	

B A DEGREE (CBCS)EXAMINATION, DECEMBER 2018

First Semester

B.A Corporate Economics Model III

Core Course - EC1CRT28 - MATHEMATICS FOR ECONOMISTS - I

2018 Admission only

30AD8592

Maximum Marks: 80

Time: 3 Hours

Part A

Answer any **ten** questions. Each question carries **2** marks.

1. What is column matrix with example

		[1	2]		$\lceil -1 \rceil$	-2]
2.	Find X such that P-Q+X=0 where P=	2	4	, Q=	0	4
		3	6		3	1

3. Evaluate $\begin{vmatrix} 1 & 2 & -3 \\ -1 & 2 & 4 \\ 2 & 1 & 6 \end{vmatrix}$

4. What is matrix method

5.		1	2	3]
	Find the rank of the matrix	3	6	9
		2	4	6

- 6. What is input output matrix
- 7. Examine the meaning and significance of input output analysis
- 8. Comment on he economic application of input output analysis

9. Test the Hawkins Simon condition for the technological matrix

$$\begin{bmatrix} 0.2 & 0.4 \\ 0.3 & 0.5 \end{bmatrix}$$

10. What do you mean by optimal solution

11. What is dual problem in linear programming problem.

12. Solve 4x+3=7

(10×2=20)

Part B

Answer any **six** questions.

Each question carries 5 marks.

- 13. Explain different types of vectors.
- 14. Define symmetric and skew symmetric example

15.
$$\begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 3 & -2 & 1 \end{bmatrix}$$
 show that Adj A= 3 A^t
16. Find the inverse of
$$\begin{bmatrix} 2 & -3 \\ 4 & -1 \end{bmatrix}$$

- 17. Analyse the scope of input output analysis
- 18. What are the basic assumptions in linear programming problem.
- 19. A manufacturer of furniture makes two products chairs and tables.Processing of these products is done on two machines A and B.A chair requires 2 hours on machine A and 6 hours on machine B.A table requires 5 hours on machine A and no time on machine B.There are 16 hours of time per day available on machine A and 13 hours on machine B.Profit gained by the manufacturer from a chair is Rs.2 and from a table is Rs.5 respectively .Formulate the problem into a L.P.P inorder to maximise the total profit.

20. Solve 4x²-9=0

21. Solve x+y=12, $x^2+y^2=74$

(6×5=30)

Part C

Answer any **two** questions. Each question carries **15** marks.

22. Solve the system of equations5x-6y+4z=15, 7x+4y-3z=19, 2x+y+6z=46 using Cramer's rule

using

23. Solve Min Z= -x+2y subject to -x+3y \leq 10 x-y \leq 2 x+y \leq 6 x,y \geq 0

- 24. Solve (i) $\frac{x-y}{2} = \frac{y-1}{3}$ and $\frac{3x-4y}{5} = x-10$. (ii) $\frac{7}{x} + \frac{3}{y} = \frac{11}{5}$ and $\frac{5}{y} - \frac{15}{x} = 1$
- 25. Solve 2x-y+z=3 x+3y-2z=11 3x-2y+z=4

(2×15=30)

4