\qquad
\qquad

B.A. DEGREE (CBCS) EXAMINATION, JANUARY/FEBRUARY 2018

First Semester

Corporate Economics
Core-MATHEMATICS FOR ECONOMICS-I
(2017 Admissions)
Time : Three Hours
Maximum Marks : 80

> Part A
> Answer any ten of the following.
> Each question carries 2 marks.

1. What do you mean by linear equations?
2. What is cumulative law of matrix ?
3. Define Identifier.
4. Define input-output transaction matrix.
5. What do you mean by Row vector?
6. Solve $3(x+5)=21$.
7. What is dual problem in linear programming ?
8. Define determinant.
9. If $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$, find $|\mathrm{A}|$.
10. Define null matrix.
11. What do you mean by trace of a matrix ?
12. What is rank of a matrix?

Part B

Answer any six questions.
Each question carries 5 marks.
13. Find $\mathrm{A}+\mathrm{B}$ if $\mathrm{A}=\left[\begin{array}{cc}2 & 0 \\ -5 & 6\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{cc}-3 & 6 \\ 4 & 1\end{array}\right]$.
14. Explain the properties of a determinant.
15. What is input-output analysis?
16. What is the optimal solution of a linear programming problem ?
17. Verify $\left[A^{T}\right]^{T}=A$, if $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$.
18. Solve $3 x^{2}-2 x-1=0$.
19. Distinguish between diagonal matrix and scalar matrix.
20. Compute cofactor for the matrix $A=\left[\begin{array}{lll}5 & 2 & 1 \\ 2 & 1 & 4 \\ 0 & 5 & 6\end{array}\right]$.
21. Explain the limitations of input-output analysis.

$$
(6 \times 5=30)
$$

Part C

Answer any two questions.
Each question carries 15 marks.
22. Solve the following linear equations by using Crammer's rule :

$$
\begin{aligned}
& x+2 y+3 z=11 \\
& 2 x-y+4 z=13 \\
& 3 x+4 y-5 z=3
\end{aligned}
$$

23. Explain the various steps involved in solving a linear programming problem by graphical method. Solve graphically :

$$
\begin{aligned}
& \text { Minimize } \mathrm{C}=120 x_{1}+60 x_{2} \\
& \text { subject to } \quad 3 x_{1}+x_{2} \geq 15 \\
& \\
& x_{1}+5 x_{2} \geq 20 \\
& \\
& 3 x_{1}+2 x_{2} \geq 24 \\
& \\
& \\
& x_{1}, x_{2} \geq 0 .
\end{aligned}
$$

24. Explain the importance of input-output analysis and its limitations.
25. Solve the following pair of simultaneous equations :
(a) $\quad \begin{aligned} 2 x+3 y & =13 \\ 4 x-2 y & =2 .\end{aligned}$
(c) $\begin{aligned} 3 x-2 y & =13 \\ 5 x+3 y & =66 .\end{aligned}$
(b) $4 x+3 y=7$
$3 x-2 y=9$.

$$
(2 \times 15=30)
$$

