|--|

QP CODE: 19101924

Reg No : Name :

BA DEGREE (CBCS) EXAMINATION, MAY 2019

Second Semester

B.A Corporate Economics Model III

Core Course - EC2CRT06 - MATHEMATICS FOR ECONOMICS- II

2017 ADMISSION ONWARDS

16A5EC1A

Maximum Marks: 80

Time: 3 Hours

Part A

Answer any **ten** questions. Each question carries **2** marks.

x1. Find the derivative of *logx*

2. $\frac{dy}{\text{If } x+y=a \text{ find }} \frac{dy}{dx}$

3. If
$$y=e^{2x}$$
 find y_2

- 4. Discuss any method of solving assignment problems
- 5. How will you solve maximisation problems using assignment techniques?
- 6. Distinguish between basic feasible solution and optimal solution of a transportation problem
- 7. Write a short note on North west corner rule
- 8. What are unbalanced problems?
- 9. Define singular and non singular matrix
- 10. Define inverse of a matrix
- 11. Define subset of a set
- 12. Represent $(A \cup B)^c$ using venn diagram

(10×2=20)

Part B

Answer any six questions.

Each question carries 5 marks.

- 13. Find the differential coefficient of $(2x-1)^2$
- 14. Differentiate (x-1)(3x-1)
- 15. Distinguish between assignment problems and transportation problems
- 16. Explain MODI method of testing optimality of a solution

17.
$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$
Reduce the matrix A=

2 1 / to row equivalent canonical form and also find the rank

- 18. Explain elementary transformations
- 19. Different types of sets

of A

- 20. Define union and intersection of sets with example
- 21. If $A = \{1, 2, 3, 5\}, B = \{2, 3, 4\}, C = \{1, 2, 3, 4\}$ find $(A \cap B) \times (A \cap C)$

(6×5=30)

Part C

Answer any **two** questions.

Each question carries 15 marks.

22. If
$$y=x^2 \log x$$
, prove that $x^2 y_2 - x y_1 = 2x^2$

23. A company is faced with the problem of assigning six different jobs. The costs are estimated as follows(hundreds of rupees)

	1	2	3	4	5
А	2.5	5	1	6	1
В	2	5	1.5	7	3
С	3	6.5	2	8	3
D	3.5	7	2	9	4.5
Е	4	7	3	9	6
F	6	9	5	10	6

	A	В	C	D	Supply
Ι	6	4	1	5	14
II	8	9	2	7	16
III	4	3	6	2	5
Demand	6	10	15	4	

24. Find the initial feasible solution to the transportation problem using lowest cost entry method

25. Find the rank of the matrix A by reducing to its row equivalent Canonical form

(4	0	2	6 \
2	1	3	1
0/	1	2	$^{-2}/$

(2×15=30)