B A DEGREE (CBCS)EXAMINATION, NOVEMBER 2019
 First Semester

B.A Corporate Economics Model III

Core Course - EC1CRT28 - MATHEMATICS FOR ECONOMISTS - I
2017 Admission Onwards
019516F4
Time: 3 Hours
Maximum Marks :80

Part A

Answer any ten questions.
Each question carries 2 marks.

1. Define unit vector.
2. If $v_{1}=(5,2,3)$,find $3 v_{1}$
3. Define skew symmetric matrix.
4. Define inverse of a matrix.
5. Find the rank of $\left[\begin{array}{lll}5 & 2 & 1 \\ 0 & 1 & 3 \\ 2 & 1 & 0\end{array}\right]$
6. Define cofactor matrix.
7. What you mean by input output analysis?
8. State Hawkins Simon condition in input output analysis
9. Describe decision variables, objective function and constraints of a linear programming problem.
10. What is dual problem in linear programming problem.
11. Solve $7(x-2)+8(x-3)-22=x+10$
12. Find two numbers whose sum is 30 and difference is 4 .

Part B

Answer any six questions.
Each question carries 5 marks.
13. Find the value of $\left|\begin{array}{ccc}1 & 2 & -3 \\ 2 & -1 & 2 \\ 3 & 2 & 4\end{array}\right|$
14.

Find the adjoint of A where $\mathrm{A}=\left[\begin{array}{ccc}3 & 5 & 7 \\ 2 & -3 & 1 \\ 1 & 1 & 2\end{array}\right]$
15. Examine the economic application of input output analysis.
16. How do input output matrix developed by W Leontief?
17. Analyse the scope of input output analysis.
18. A manufacturer of furniture makes two products chairs and tables.Processing of these products is done on two machines A and B.A chair requires 2 hours on machine A and 6 hours on machine B.A table requires 5 hours on machine A and no time on machine B. There are 16 hours of time per day available on machine A and 13 hours on machine B.Profit gained by the manufacturer from a chair is Rs. 2 and from a table is Rs. 5 respectively. Formulate the problem into a L.P.P inorder to maximise the total profit.
19. Explain unbounded and alternative solution of a linear programming problem.
20. Solve $\mathrm{x}+\mathrm{y}=1, \mathrm{y}+\mathrm{z}=1, \mathrm{z}+\mathrm{x}=4$
21. Solve $2 \mathrm{x}+\frac{5}{x}=7$

Part C

Answer any two questions.
Each question carries $\mathbf{1 5}$ marks.
22. If $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1\end{array}\right]$ find $A^{3}-23 A-40 I$
23. Sove the system of equations $x+y+z=7, x+2 y+3 z=16, x+3 y+4 z=22$ using Cramer's rule.
24. Solve Max $Z=3 x+2 y$
subject to $-2 x+y \leq 1$
$\mathrm{x} \leq 2$
$x+y \leq 3$
$x, y \geq 0$
25. Solve(i) $x-y=3, x y=10$
(ii) $x+y=19, x^{2}+y^{2}=185$

