Total Pages: 2

Reg No.:___

Name:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2017

Course Code: EC205

Course Name: ELECTRONIC CIRCUITS (EC, AE)

Max. Marks: 100

Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks. Marks

- 1 a) What is the condition for an RC circuit to behave as an integrator?
 - b) Design a differentiator circuit to differentiate a square wave of 20V peak to peak (4) amplitude and 1.5KHz frequency.
 - c) Prove that for an emitter follower circuit gain is approximately one.
- 2 a) For a voltage divider network, $R_1=36K$, $R_2=9K$, $R_E=2K$, $R_C=9K$, $V_{CC}=24V$, (5) $V_{BE}=0.7V$. Calculate I_C and V_{CE} for $\beta=100$.
 - b) Derive Input impedance and Voltage gain of a Common Emitter Amplifier with (6) emitter bypassed for the mid frequency range using hybrid π model.
 - c) For a fixed bias circuit, $V_{CC}=10V$, $R_B = 50K$, $R_C = 500\Omega$. Assume silicon transistor (4) with $\beta=50$ and $V_{BE} = 0.7V$. Find the co-ordinates of Q point.
- 3 a) A square wave of peak to peak amplitude 4V extending ±2V with respect to ground (7) is applied to a low pass RC circuit. The duration of positive section is 0.2sec and that of negative section is 0.1sec. Plot the output waveform. The time constant of the circuit is 0.2sec.
 - b) For the circuit shown, calculate input impedance, output impedance and voltage gain (8) for the mid frequency range using hybrid π model. R_E=6.8K, R_C=4.7K, α =0.99

PART B

Answer any two full questions, each carries 15 marks.

- 4 a) Draw the circuit diagram of a RC phase shift oscillator and explain its working. (10) Derive the expression for frequency of oscillation.
 - b) Derive expression for short circuit current gain in terms of frequency of operation. (5)
- 5 a) Calculate the bandwidth f_{β} and capacitance $C\pi$ of a BJT whose $f_T = 500$ MHz at $I_C = (6)$ 1mA, $\beta = 100$ and $C\mu = 0.3$ pF
 - b) Explain how negative feedback acts on gain, distortion, stability and frequency (9) response of a circuit.

Maulia

(4)

(7)

D7265

- 6 a) Explain Miller's theorem.
 - b) Discuss the variation of input and output resistance on voltage series and current (6) shunt feedback.

(4)

(6)

(5)

c) Draw the circuit of a cascode amplifier and briefly explain its features. (5)

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) Explain the working of an astable multivibrator circuit with a neat circuit diagram (10) and waveforms. Derive an expression for period of oscillation.
 - b) For the circuit shown, I_{DSS} = 5mA, gmo = 2500 μ S. If Rs = 820 Ω , what is I_D , V_{GS} (10) and V_{DS} .

- 8 a) For a series fed class A amplifier, $R_B = 1K$, $R_C = 20\Omega$ and $V_{CC} = 20V$. β for BJT is (6) 25. Calculate the input power, output power and conversion efficiency for an input voltage resulting in a base current of 10mA peak.
 - b) Derive expressions for voltage gain and output resistance for a common source (8) amplifier with source bypassed using small signal model in mid frequency.
 - c) Compare Class A, Class B and Class AB power amplifiers.
- 9 a) Explain the working of bootstrap circuit with a neat circuit diagram and waveforms. (7)
 - b) Prove that the conversion efficiency of Class B amplifier is 78.5%.
 - c) With a neat circuit diagram, explain how output voltage can be regulated by using (8) series feedback voltage regulator. How short circuit protection can be implemented in this?

D