Name:

Reg. No:_____ **APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY** THIRD SEMESTER B.TECH DEGREE EXAMINATION, JANUARY 2017

Course Code: EC201 Course Name: NETWORK THEORY (AE, EC)

Max. Marks: 100

Duration: 3 Hours

PART A

Question No. 1 is compulsory. Answer Question 2 or 3

1. a. Use nodal analysis to find v_x in the circuit.

b. Find the Thevenin equivalent of the network shown in figure. What power would be delivered to a load of 100 ohms at a and b? (6)

c. State and prove maximum power transfer theorem.	(3)
--	-----

2. a. Obtain the expressions for the time-domain currents i_1 and i_2 in the circuit (8)

B

(6)

B

b. Explain source transformations and use it to determine the power dissipated by $1M\Omega$ resistance.

1. OR

3. a. Find the Thevenin equivalent circuit with respect to terminals a and b

b. State and prove time differentiation and time integration theorems in Laplace Transform

(6)

(8)

(7)

(9)

PART B

Question No. 4 is compulsory. Answer Question 5 or 6

- 4. a. Derive transient current and voltage responses of sinusoidal driven RL and RC circuits. (10)b. Explain how to determine the time domain behaviour from the pole zero plot. (5)
- 5. a. Find the current $i_L(t)$ for all t after the switch opens.

b. Find $v_C(t)$ for t > 0 in the circuit.

OR

6. What are the restrictions on pole and zero locations for transfer functions and driving-point functions. (15)

PART C

Question No. 7 is compulsory. Answer Question 8 or 9

- 7. a. Explain the series and parallel connection of two port networks. (8)
 b. Derive the interrelationship between transmission and hybrid two port network parameters.
 - (6)
 - c. For the network shown in figure find the resonant frequency. (6)

8. a. Find yparameters for the two-port network shown in figure. (6)

(7)

b. Calculate h parameters for the two-port network shown in figure.

c. Calculate transmission parameters for the two-port network shown in figure.

OR

9. a. Find V in the circuit.

b. Find the time domain values of currents marked in the circuit.

Page 4 of 4

(4)

(10)

(7)

(7)

B