Total Pages: 2

\qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIFTH SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2017 Course Code: CE305
 Course Name: GEOTECHNICAL ENGINEERING - II

Max. Marks: 100
Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks.

Marks

1 a) What are the assumptions in the Boussinesq's formula for stress distribution?
b) A water tank is founded on a circular ring type foundation. The ring is of 10 m external diameter and 6 m internal diameter. Assuming a uniformly distributed load of 300 kPa , determine the vertical pressure at a depth of 6 m below the centre of the foundation.
c) What is pressure bulb? Discuss its significance.

2 a) Explain the use of Newmark's chart
b) A wall of 8 m height retains a non-cohesive backfill of dry unit weight $18 \mathrm{kN} / \mathrm{m}^{3}$ and $\varphi=30^{\circ}$. Using Rankine's theory find the total active thrust on the wall and the point of application if it carries a uniform surcharge load of 10 kPa .
3 Compute the total lateral earth thrust exerted by a layered backfill of height 10 m if the wall has a tendency to move towards backfill. The upper layer of thickness 6 m has angle of internal friction 32° and saturated unit weight $18 \mathrm{kN} / \mathrm{m}^{3}$. The lower layer has angle of internal friction 28°, cohesion 20 kPa , and saturated unit weight $19 \mathrm{kN} / \mathrm{m}^{3}$. The backfill also supports a uniform surcharge of intensity $8 \mathrm{kN} / \mathrm{m}^{2}$. Water table is at a depth of 5 m below the surface of the backfill. Also find the point of application. Soil above water table is also saturated

PART B
 Answer any two full questions, each carries 15 marks.

4 a) What are the assumptions in Terzaghi's bearing capacity theory
b) A square footing of 2 mx 2 m is provided at a depth of 1 m , in a sandy soil with an angle of internal friction of 30°. Compute the net safe bearing capacity of the soil with a factor of safety of 3 , when the water table is at a depth of $0.5 \mathrm{~m} \& 1.5 \mathrm{~m}$ below the ground level. Given $\mathrm{G}=2.65, \mathrm{e}=0.7$, Degree of saturation above water table $=80 \%, \mathrm{~N}_{\mathrm{c}}=95, \mathrm{~N}_{\mathrm{q}}=80.4, \mathrm{~N}_{\gamma}=100.2$.
5 a) Differentiate between general and local shear failure of soil.
b) What remedial measures can be taken to control the differential settlement of foundations?
c) Under what situations raft foundation is preferred?

6 a) Explain with neat sketches, the various elements of a well foundation.
b) Design the plan dimensions of a trapezoidal footing to support two adjacent columns at a centre to centre distance of 5 m carrying loads of 1500 kN and

3000 kN . The smaller column is of size 400 mmx 400 mm and is at a clear distance of 250 mm from the property line. The bigger column is of size 750 mmx 750 mm . The permissible soil pressure is 300 kPa .

PART C

Answer any two full questions, each carries20 marks.
7 a) What is negative skin friction?
b) What is dynamic pile capacity?
c) A group of 9 piles 12 m long and 250 mm in diameter is to be arranged in a square form in clay with an average unconfined compressive strength of $60 \mathrm{kN} / \mathrm{m}^{2}$. Determine the centre to centre spacing of the pile for group efficiency of 1 . Neglect bearing at the tip. $\alpha=0.9$
8 a) Explain mass spring model for undamped free vibration
b) Explain with a neat sketch, the wash boring method. What are its advantages and disadvantages?
c) Using modified Hiley'sformula, determine the safe load that can be carried by a pile. The gross weight of the pile is 1400 kg , weight of hammer 2000 kg , height of fall 91 cm , hammer efficiency 70%, average penetration under the last 5 blows is 10 mm , coefficient of restitution is 0.55 and the factor of safety is 2.5 . assume $\mathrm{C}=2.5$ and $\mathrm{e}=0.5$
9 a) Explain in detail the procedure for standard penetration test. What are the corrections to be applied to the N -Value?
b) What are the main objectives of the site investigation?

