C C7053

	Total Pages:	2
Reg No	D.: Name:	
	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIFTH SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2017	
	Course Code: CE305	
	Course Name: GEOTECHNICAL ENGINEERING – II	
Max.	Marks: 100 Duration: 3	Hours
	PART A	
	Answer any two full questions, each carries 15 marks.	Marks
1 a)	What are the assumptions in the Boussinesq's formula for stress distribution?	(5)
b)	A water tank is founded on a circular ring type foundation. The ring is of 10m external diameter and 6m internal diameter. Assuming a uniformly distributed load of 300kPa, determine the vertical pressure at a depth of 6m below the centre of the foundation.	(5)
c)	What is pressure bulb? Discuss its significance.	(5)
2 a)	1	(5)
b)	A wall of 8m height retains a non-cohesive backfill of dry unit weight 18kN/m^3 and $\phi = 30^\circ$. Using Rankine's theory find the total active thrust on the wall and the point of application if it carries a uniform surcharge load of 10kPa .	(10)
3	Compute the total lateral earth thrust exerted by a layered backfill of height 10m if the wall has a tendency to move towards backfill. The upper layer of thickness 6m has angle of internal friction 32° and saturated unit weight 18kN/m³. The lower layer has angle of internal friction 28°, cohesion 20kPa, and saturated unit weight 19kN/m³. The backfill also supports a uniform surcharge of intensity 8kN/m². Water table is at a depth of 5m below the surface of the backfill. Also find the point of application. Soil above water table is also saturated	(15)
	PART B	
	Answer any two full questions, each carries 15 marks.	
4 a) b)		(5) (10)
5 a)		(5)
b)	<u>C</u>	(5)
c)	Under what situations raft foundation is preferred?	(5)
6 a)	Explain with neat sketches, the various elements of a well foundation.	(7)
b)	Design the plan dimensions of a trapezoidal footing to support two adjacent columns at a centre to centre distance of 5m carrying loads of 1500kN and	(8)

C C7053

3000kN. The smaller column is of size 400mmx400mm and is at a clear distance of 250mm from the property line. The bigger column is of size 750mmx750mm. The permissible soil pressure is 300kPa.

PART (

Answer any two full questions, each carries 20 marks.

7	a)	What is negative skin friction?	(5)
	b)	What is dynamic pile capacity?	(5)
	c)	A group of 9 piles 12m long and 250mm in diameter is to be arranged in a square	(10)
		form in clay with an average unconfined compressive strength of 60kN/m ² .	
		Determine the centre to centre spacing of the pile for group efficiency of 1.	
		Neglect bearing at the tip. α =0.9	
8	a)	Explain mass spring model for undamped free vibration	(5)
	b)	Explain with a neat sketch, the wash boring method. What are its advantages and	(7)
		disadvantages?	
	c)	Using modified Hiley's formula, determine the safe load that can be carried by a	(8)
		pile. The gross weight of the pile is 1400kg, weight of hammer 2000kg, height of	
		fall 91cm, hammer efficiency 70%, average penetration under the last 5 blows is	
		10mm, coefficient of restitution is 0.55 and the factor of safety is 2.5. assume	
		C=2.5 and $e=0.5$	
9	a)	Explain in detail the procedure for standard penetration test. What are the	(15)
		corrections to be applied to the N-Value?	` '
	b)	What are the main objectives of the site investigation?	(5)
		****	` '
