\qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

 FIFTH SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2017
Course Code: EC303
 Course Name: APPLIED ELECTROMAGNETIC THEORY (EC)

Duration: 3 Hours

Smith Chart to be supplied on request. PART A
 Answer any two full questions, each carries 15 marks.

1 a) Derive the expressions for Energy stored in Electric Field.
b) Eight identical charges, Q each are placed on the corners of a cube of side ' a '. Find the resultant force on a charge.

2 a) Derive Maxwell's first and second equations from fundamental laws.
b) Starting from Maxwell equation, derive the wave equation for a conducting medium.
3 a) Determine the inductance of a Two- wire transmission line.
b) A Parallel plate capacitor with plate area of $5 \mathrm{~cm}^{2}$ and a plate separation of 3 mm has a voltage $50 \sin 10^{3} \mathrm{t}$ Volt applied to its plates.Calculate the displacement current assuming $\varepsilon=2 \varepsilon_{0}$.
c) Derive the boundary conditions for electric field at the interface of two dielectrics.

PART B

Answer any two full questions, each carries 15 marks.
4 a) State Poynting theorem. Derive the equation of complex vector.
b) A lossless $50-\Omega$ transmission line is terminated in a load with $Z_{L}=(50+j 25) \Omega$.

Calculate (i) The reflection coefficient Γ. (ii) The standing-wave ratio.
5 a) Derive the input impedance of a transmission line. For a shorted section of 75 ohm transmission line, $1=\lambda / 4$, Find the input impedance assuming $\alpha=0$.
b) Differentiate circular and elliptical polarization.

6 a) Derive standard Transmission line equations.
b) Derive Brewster angle.A parallel-polarized plane wave is incident from air onto a dielectric medium with $\varepsilon r=9$ at the Brewster angle. What is the refraction angle?

PART C
Answer any two full questions, each carries 20 marks.
7 a) A lossless transmission line with $\mathrm{Z}_{0}=50 \Omega$ is 30 m long and operates at 2 MHz . The line is terminated with a load $\mathrm{Z}_{\mathrm{L}}=60+\mathrm{j} 40 \Omega$. If $\mathrm{u}=0.6 \mathrm{c}$ on the line, find
i) Reflection coefficient ii) Standing wave ratio iii) Input impedance
b) Discuss the attenuation of waveguides.

8 a) Explain single stub matching in detail using analytical method.
b) Explain Group velocity and Phase velocity. When a wave of 6 GHz propagates in
parallel conducting plates separated by 3 cm , find the V_{P} and V_{g} of the wave for dominant wave.
9 a) Explain waveguides and its different modes of wave propagation.
b) Explain Half Wave and Quarter Wave Transmission lines. Given that $\mathrm{Z}_{\mathrm{L}}=30+\mathrm{j} 40 \Omega, \mathrm{Z}_{0}=50 \Omega$. Find the shortest length (' l ') and point where stub has to be placed for a matching. (Use Smith chart)

