APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER M.TECH DEGREE EXAMINATION Inter-disciplinary Engineering
 (Robotics and Automation Engineering)
 04 EC 6901 Advanced Mathematics \& Optimization techniques

Time: 3 hrs
Max. Marks: 60

PART A
 (Answer all questions. Each question carry 3 marks).

1. Define linear independence and dependence.
2. Define linear transformation.
3. Define the term orthonormal sets .
4. What are the properties of linear programming solution.
5. With the help of an example define integer programming problem.
6. State Kuhn-Tucker conditions for the following nonlinear programming problem:

$$
\begin{array}{r}
\text { Maximise } z=3 x_{1}{ }^{2}+14 x_{1} x_{2}-8 x_{2}{ }^{2} \\
\text { Subject to } 3 x_{1}+6 x_{2} \leq 72 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

7. Mention Branch and bound algorithm applied to maximization problem.
8. What is quadratic programming?

PART B

(Each full question carries 6 marks).
9. Determine whether $\left\{\left.\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in M_{2 \times 2} \right\rvert\, b=c=0\right\}$ is a vector space under standard matrix addition and scalar multiplication

OR
10. Determine the co-ordinate representation of the matrix $\left[\begin{array}{ll}4 & 3 \\ 6 & 2\end{array}\right]$ with respect to the basis $S=\left\{\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\right\}$
11. Identify the kernal and image of the linear transformation $T: \mathbb{P}^{2} \rightarrow \mathbb{M}_{2 \times 2}$ defined by

$$
T\left(a t^{2}+b t+c\right)=\left[\begin{array}{cc}
a & 2 b \\
0 & a
\end{array}\right]
$$

for all real numbers a and b

OR

12. Find the matrix representation for the linear transformation $T: \mathbb{M}_{2 \times 2} \rightarrow \mathbb{M}_{2 \times 2}$ defined by

$$
T\left[\begin{array}{ll}
a & b \tag{6}\\
c & d
\end{array}\right]=\left[\begin{array}{cc}
a+2 b+3 c & 2 b-3 c+4 d \\
3 a-4-5 d & 0
\end{array}\right]
$$

13. Explain the process of QR decomposition.

OR

14. Construct an ortho-normal set from the following linearly independent sets.

$$
x_{1}=\left[\begin{array}{l}
1 \tag{6}\\
1 \\
0
\end{array}\right], \quad x_{2}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], x_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

15. Solve using dual simplex method

$$
\begin{aligned}
& \text { Min } z=2 x_{1}+4 x_{2} \\
& \text { Subject to } 2 x_{1}+x_{2} \geq 4 \\
& x_{1}+2 x_{2} \geq 3 \\
& 2 x_{1}+2 x_{2} \leq 12 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

OR

16. Solve the following LPP using Big M Method

$$
\begin{aligned}
& \text { Min } z=2 x_{1}+3 x_{2} \\
& \text { Subject to } x_{1}+x_{2} \geq 6 \\
& 7 x_{1}+x_{2} \geq 14 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

17. Consider the capital budgeting problem where 5 projects are being considered for execution over the next 3 years. The expected returns for each project and the early expenditure are shown below. Assume that each approved project will be executed over the 3 -year period. The objective is to select a combination of projects that will maximise the total returns

Expenditure for				
Project	Year 1	Year 2	Year 3	Returns
1	5	1	8	20
2	4	7	10	40
3	3	9	2	20
4	7	4	1	15
5	8	6	10	30
Max: funds	25	25	25	-

Formulate the problem as a zero - one integer programming problem and solve it by the additive algorithm.
18. Find the optimum integer solution of the following programming problem.

$$
\begin{array}{r}
\text { Max } z=5 x_{1}+8 x_{2} \\
\text { Subject to } \quad x_{1}+x_{2} \leq 8 \\
4 x_{1}+x_{2} \leq 10 \\
x_{1}, x_{2} \geq 0 \quad \text { and integer }
\end{array}
$$

19. Solve using Lagrangian method

$$
\begin{array}{rr}
\text { Maximise } & z=x_{1}^{2}+2 x_{2}^{2}+x_{3}^{2} \\
\text { Subject to } & 2 x_{1}+x_{2}+2 x_{3}=30 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

OR
20. Solve the following using Kuhn-Tucker conditions

$$
\begin{array}{r}
\text { Maximise } z=x_{1}^{2}+x_{1} x_{2}-2 x_{2}^{2} \\
\text { Subject to } \begin{array}{r}
4 x_{1}+2 x_{2} \leq 24 \\
x_{1}, x_{2} \geq 0
\end{array}
\end{array}
$$

