APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER M.TECH DEGREE EXAMINATION
 Electrical and Electronics Engineering
 (Power Systems)
 04 MA 6303-APPLIED MATHEMATICS

Time: 3 hrs
Max. Marks: 60

PART A
 (Answer all questions. Each question carry 3 marks).

1. Find the Fourier transform of $f(x)=e^{-a x}, x>0, a>0$.
2. Find the extremals of the functional $\int_{x_{0}}^{x_{1}}\left(x+y^{\prime}\right) y^{\prime} d x$
3. Show that the integral equation $y(x)=\int_{0}^{x}(x-t) y(t) d t+3 \sin x$ is equivalent to the differential equation $\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+3 \sin x=0$ where $y=0$ and $\frac{d y}{d x}=3$ at $x=0$.
4. Show that the sample mean is an unbiased estimate of the population mean.
5. Derive the normal equations for a parabolic least square error estimate.
6. Derive Crank-Nicolson formula for the heat .
7. Prove that if two vectors are linearly dependent, one of them is a scalar multiple of the other.
8. Describe explicitly a linear transformation from R^{3} into R^{3} which has as its range the subspace spanned by $(1,0,-1)$ and $(1,2,2)$.

PART B

(Each full question carries 6 marks).
9. Using the inversion integral method(Residue Method) find the inverse Z - transform of $\frac{10 z}{(z-1)(z-2)}$.

OR
10. Find the response of the system $y_{n+2}-5 y_{n+1}+6 y_{n}=u_{n}$ with $y_{0}=0, y_{1}=1, u_{n}=1$ for $n=0,1,2 \ldots$ by Z - transform method.
11. Find the extremal of the functional $\int_{0}^{\pi}\left(y^{\prime 2}-y^{2}\right) d x$ under the conditions $y(0)=0, y(\pi)=1$ and subject to the constraint $\int_{0}^{\pi} y d x=1$.

OR

12. A heavy cable hangs freely under gravity between two fixed points. Show that the shape of the cable is a caternary.
13. Solve $y(x)=x+\frac{1}{6} \int_{0}^{x}(x-t)^{3} y(t) d t$ by transform method.

OR
14. Solve the Volterra integral equation $y(x)=2\left(1+x^{2}\right)-\int_{0}^{x} x y(t) d t$ using successive approximation.
15. If $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a sample of independent observations from a poisson population with parameter λ, obtain an unbiased estimate of $e^{-\lambda}$

OR

16. Find the maximum likelihood estimates of the mean and variance in the case of a normal population.
17. Fit a least square trend line to the data $y(0)=5, y(1)=6, y(2)=13, y(3)=32, y(4)=69$

OR

18. Determine the constants a and b by the method of least squares such that $y=a e^{b x}$ fits the
following data $y(2)=4.077, y(4)=11.084, y(6)=30.128, y(8)=81.897, y(10)=222.62$
19. Show that the vectors $\alpha_{1}=(1,0,-1), \alpha_{2}=(1,2,1), \alpha_{3}=(0,-3,2)$ form a basis for R^{3}. Express each of the standard basis vectors as linear combination of α_{1}, α_{2} and α_{3}.

OR

20. Let T be a linear operator on R^{3}, the matrix of which in the standard ordered basis is

$$
A=\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 1 \\
-1 & 3 & 4
\end{array}\right]
$$

Find a basis for the range of T and a basis for the null space of T.

