APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY
 FIRST SEMESTER M. TECH DEGREE EXAMINATION

Electronics \& Communication Engineering

(Telecommunication Engineering)
04EC6801-Applied Linear Algebra

Max. Marks : 60
Duration: 3 Hours

PART A

Answer All Questions

Each question carries 3 marks

1. Given $\mathrm{v}_{1}=\left[\begin{array}{c}1 \\ -2\end{array}\right], \mathrm{v}_{2}=\left[\begin{array}{c}-2 \\ 4\end{array}\right]$, Does $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$ spans R^{2} ?
2. Explain null space, range and nullity.
3. Find the matrix representation of the linear map $G: R^{2} \rightarrow R^{2}$ defined by $G(x, y)=(2 x-3 y, 4 x+y)$ relative to the basis $\left\{u_{1}=(1,-2), u_{2}=(2,-5)\right\}$ of R^{2}.
4. Verify the Pythagoras Theorem for the following orthogonal set in $R^{4}, u=(1,2,-3,4), v=(3,4,1,-2)$, $w=(3,-2,1,1)$.
5. State Spectral Theorem with example.
6. Determine the eigen values of $\mathrm{A}=\left[\begin{array}{ccc}-1 & 2 & 1 \\ 0 & 1 & -1 \\ 0 & 2 & -2\end{array}\right]$ and their algebraic multiplicity.
7. Explain nullspace and nullity of AA^{T} and $\mathrm{A}^{\mathrm{T}} \mathrm{A}$.
8. Explain the geometry of pseudo inverse.

PART B

Each question carries 6 marks
9. Find the dimension and basis for row space of the matrix $\mathrm{A}=\left[\begin{array}{ccccc}1 & 2 & 0 & 2 & 5 \\ -2 & -5 & 1 & -1 & -8 \\ 0 & -3 & 3 & 4 & 1 \\ 3 & 6 & 0 & -7 & 2\end{array}\right]$.

OR
10. a) Show that the vector $\left[\begin{array}{c}20 \\ 4\end{array}\right]$ belongs to span of $\left\{\left[\begin{array}{l}1 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 5\end{array}\right]\right\}$
b) Prove that the vectors $(1,-1,1),(0,1,2)$ and $(3,0,-1)$ form a basis for R^{3}.
11. Find the least square solution to the matrix equation $\left[\begin{array}{cc}2 & -2 \\ -2 & 2 \\ 5 & 3\end{array}\right] \mathrm{X}=\left[\begin{array}{c}-1 \\ 7 \\ -26\end{array}\right]$ using pseudo inverse method.

OR
12. Find the values of ' λ ' for which the system of equations $x+y+z=1, x+2 y+4 z=\lambda, x+4 y+10 z=\lambda^{2}$ will be consistent and also show that for each value of λ the system has a one parameter family of solutions and find these solutions.
13. Find the four fundamental sub spaces of the given matrix $\mathrm{A}=\left[\begin{array}{ccccc}1 & -2 & -1 & 3 & 2 \\ 2 & -2 & -3 & 6 & 1 \\ -1 & -4 & 4 & -3 & 7\end{array}\right]$.

OR
14. Given bases of $R^{2}: S_{1}=\left(u_{1}=(1,-2), u_{2}=(3,-4)\right)$ and $S_{2}=\left(v_{1}=(1,3), v_{2}=(3,8)\right)$. Find the change of basis matrix from S_{1} to S_{2} and find the change of basis matrix from S_{2} back to S_{1}.
15. Find the orthonormal basis of the subspace W of R^{5} spanned by $v_{1}=(1,1,1,0,1), v_{2}=(1,0,0,-1,1)$, $\mathrm{v}_{3}=(3,1,1,-2,3), \mathrm{v}_{4}=(0,2,1,1,-1)$

OR

16. Find a basis for W^{\perp} where $\mathrm{W}=\operatorname{span}\left\{\left[\begin{array}{c}1 \\ -5 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 1\end{array}\right]\right\}$.
17. Compute eigen vectors of the matrix $A=\left[\begin{array}{ccc}4 & 6 & 10 \\ 3 & 10 & 13 \\ -2 & -6 & -8\end{array}\right]$.

OR
18. Diagonalize the given matrix $\mathrm{A}=\left[\begin{array}{lll}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right]$.
19. Find SVD of the matrix $A=\left[\begin{array}{ll}3 & -1 \\ 3 & -1\end{array}\right]$.

OR
20. Find the pseudo inverse of the matrix $A=\left[\begin{array}{cc}2 & -2 \\ -1 & 2 \\ 5 & 3\end{array}\right]$ using SVD.

