APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER M. TECH DEGREE EXAMINATION
 Computer Science and System Engineering

 04CS6401—Discrete structures for Computer Science

 04CS6401—Discrete structures for Computer Science}

Duration: 3 Hours
PART A

Answer All Questions

Each question carries 3 marks

1. Let $f: R \rightarrow R, g: R \rightarrow R$ defined by $f(x)=x^{2}, g(x)=x+5$. Then find fog, gof, fof, gog.
2. Define Hasse diagram. Let $A=\{1,2,3,4,6,8,12\}$ and R be the partial ordering relation defined by aRb if a divides b . Draw a Hasse diagram for (A, R).
3. Define Tautology. Check whether $\mathrm{P} \rightarrow(P \vee \sim Q)$ is a Tautology
4. Determine the co-efficient of $x^{2} y^{2} z^{3}$ in the expansion of $(x+y+z)^{7}$
5. How many arrangements of the letters in MISSISSIPPI have no consecutive S's.
6. A random variable X has a probability distribution $\mathrm{p}(\mathrm{X}=\mathrm{x})= \begin{cases}c(6-x) & x=1,2,3,4,5 \\ 0 & \text { otherwise }\end{cases}$

Where c is constant. Find the value of c and hence find the expectation of X .
7. Prove that every group of prime order is cyclic
8. Show that $\left[\begin{array}{ll}1 & 2 \\ 3 & 8\end{array}\right]$ is a unit in the ring $\mathrm{M}_{2}(\mathrm{Q})$ but not a unit in $\mathrm{M}_{2}(\mathrm{Z})$ where Q and Z denotes set of all rationals and set of all integers respectively.

PART B

Each question carries 6 marks

9. If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B} ; \mathrm{B}_{1}, \mathrm{~B}_{2} \subseteq \mathrm{~B}$, then prove the following
a. $f^{-1}\left(B_{1} \cup B_{2}\right)=f^{-1}\left(B_{1}\right) \cup f^{-1}\left(B_{2}\right)$
b. $f^{1}\left(B_{1} \cap B_{2}\right)=f^{-1}\left(B_{1}\right) \cap f^{-1}\left(B_{2}\right)$.

OR

10. Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}, \mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}, \mathrm{h}: \mathrm{C} \rightarrow \mathrm{D}$, then show that (hog) of $=$ ho (gof)
11. Explain the principal of Mathematical induction. Hence Show that $1^{2}+2^{2}+3^{2}+\ldots \ldots \ldots \ldots \ldots+\mathrm{n}^{2}=\frac{n(n+1)(2 n+1)}{6}$ for all natural numbers n .

OR
12. Prove that every equivalence relation defines unique partition of a set.
13. Let $\varphi_{1}, \varphi_{2}, \ldots \ldots \ldots . \varphi_{n}$ and ψ be propositional logic formulas. If $\varphi_{1}, \varphi_{2}, \ldots \ldots \ldots . \varphi_{n} \vdash \psi$, Then show that $\varphi_{1}, \varphi_{2}, \ldots \ldots \ldots \varphi_{n} \vDash \psi$ holds.

OR

14. Explain completeness of propositional logic.
15. Yosi selects a card from a well shuffled standard deck. What is the probability that his card is a club or a card whose face value is between 3 and 7 inclusive?

OR
16. Box A contains five red and three white marbles and Box B contains four red and six white marbles. If a marble is drawn from each box, what is the probability that they are both of same color.
17. Prove that every sub group of cyclic group G is again cyclic.

OR

18. Let $A=\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]$. Check whether the group $G=\left\{A, A^{2}, A^{3}, A^{4}\right\}$ is abelian under matrix multiplication. Is G a cyclic group.
19. State and prove Legrange's theorem on Groups

OR

20. Is the element 777 a unit in Z_{1009}. If so find the multiplicative inverse
