APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER M. TECH DEGREE EXAMINATION
 Computer Science and Engineering (Computer Science and Systems Engineering)

04 CS 6405 - Automata Theory and Computability

Part A (Answer All, Each Carries 03 Marks)

1. Design a DFA for the language $L=\left\{x \in\{0,1\}^{*} \mid x\right.$ represents an odd Natural number $\}$
2. Argue that the ultimate periodicity condition is not sufficient for proving regularity.
3. Give a regular expression for the language, $L=\left\{x \in\{a, b\}^{*} \mid\right.$ either x starts with an a or x ends with a $\left.b\right\}$
4. Let R be the canonical MN relation for a language L in $\{a, b\}^{*}$ with the set of equivalence classes $-\{[\lambda],[a],[b],[a b]\}$. Suppose $a b \in L$ and $\{\lambda, a, b\} \cap L=\emptyset$. Then, which language is L ?
5. Write a Context Free Grammar for the language $L=\left\{a^{n} x b^{n} \mid x \in\{0,1\}^{*}\right\}$
6. Prove or disprove that "Context-Free Languages are closed under intersection"
7. What are unit productions? What is their effect on deciding membership problem (deciding whether a given string is present in a given language or not) of Context-Free Languages?
8. Argue that the following property of Recursively Enumerable languages is non-monotone: "Language is finite"
[08 X $03=24$ Marks]

Part B (Answer All, Each Carries 06 Marks)

[06 X $06=36$ Marks]
9. Apply subset construction on the following NFA to obtain the equivalent DFA.

OR
10. Obtain the unique-minimal DFA corresponding to the canonical MN relation representing the language recognised by the following DFA.

11. Prove that the language $\mathcal{L}=\left\{a^{p}\right.$ where p is prime $\}$ is not regular.
12. Using MN Theorem argue that the language $\mathcal{L}=\left\{a^{m} b^{n} \mid m \leq n, m \geq 0\right\}$ is not regular.
13. Covert the Context Free Grammar with the following set of productions into CNF: $S \rightarrow a S b|b S a| \epsilon$

OR

14. What is a pump. Give the basic pumps of the Context Free Grammar with the following set of productions: $S \rightarrow$ $a S a|b S b| a \mid b$
15. Give a PDA (accepts by emptying stack) accepting the language $\mathcal{L}=\left\{a^{m} b^{n} \mid m \geq 0\right.$ and $\left.n>m\right\}$. (No explanation is required. It is enough to give the set of transitions or transition graph where a transition $\delta(p, a, X)=(q, Y X)$ is represented by the edge $(D \xrightarrow{(a, X) / Y X} @$.)

OR

16. Give a PDA (accepts by emptying stack) accepting the language $\mathcal{L}=\left\{a^{m} b^{n} c^{m+n} \mid m \geq 0, n \geq 0\right\}$. (No explanation is required. It is enough to give the set of transitions or transition graph where a transition $\delta(p, a, X)=(q, Y X)$ is represented by the edge (D) $\xrightarrow{(a, X) / Y X}$ (@).)
17. Design a Turing Machine to recongnize the language $L=\left\{a^{n} b^{n+2} \mid\right.$ where $\left.n \geq 0\right\}$ (No explanation is required. It is enough to give the set of transitions or transition graph where a transition $\delta(p, a)=(q, b, R)$ is represented by the edge (D) $\xrightarrow{a /(b, R)}$ (@).)

OR

18. Design a Turing Machine for checking whether a natural number m is greater than another natural number n or not. Assume that the tape initially contains the unary representations of m and n separated by the symbol $\$$. That is the initial tape content will be $+1^{m} \$ 1^{n} b^{\omega}$, where b represents the blank symbol. Design the Turing Machine to halt in the state t if $m>n$ and to halt in the state r if $m \leq n$. (No explanation is required. It is enough to give the set of transitions or transition graph where a transition $\delta(p, a)=(q, b, R)$ is represented by the edge (D) $\xrightarrow{a /(b, R)}$ @.)
19. Show without using Rice's Theorem that the language $R E G=\{M \mid M$ accepts a regular language $\}$ is not recursively enumerable.

OR

20. Show without using Rice's Theorem that the language $F U L L=\{M \mid \mathcal{L}(M)$ accepts all strings $\}$ is not recursive.
