APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

THIRD SEMESTER M. TECH DEGREE EXAMINATION

Civil Engineering

(Geomechanics & Structures)

04 CE 7311 – SLOPE STABILITY

Use of IS codes and Stability Charts are permitted

Max. Marks: 60

Duration: 3 Hours

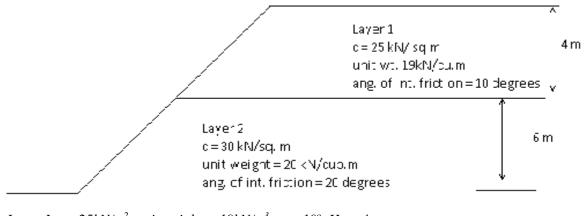
PART A

Answer All Questions

Each question carries 3 marks

- 1. State the effect of increasing pore pressure on stability of earthen slopes.
- 2. A vertical cut is made in a clay deposit. (c = 40kN/m², x = 17kN/m³ and $\phi = 0^{\circ}$). Find the maximum height of the cut which can be temporarily supported
- 3. Discuss the function of providing lightweight fills in slope stabilization
- 4. Explain various rock slope stabilization methods.
- 5. Explain types of landslides.
- 6. Explain how to identify impending landslides and historic landslides.
- 7. Discuss any two configuration of landslides with sketches
- 8. What are Anchor trenches?

PART B


Each question carries 6 marks

- 9. Explain variations of hydrostatic pressures that exist along rock discontinuities for
 - a. No tension crack and toe drained condition
 - b. No tension crack and toe blocked
 - c. With tension crack and toe blocked.

OR

- 10. Explain how monitoring of groundwater pressures are performed.
- 11. Determine the factor of safety of the slope shown in figure. The slip circle passes through two layers of soil. Use Bishop's method. Assume any missing data

1

Layer I: $c = 25kN/m^2$, *unit weight* $= 19kN/m^3$, $\varphi = 10^\circ$, $H_1 = 4m$, *Layer II:* $c = 30kN/m^2$, *unit weight* $= 20kN/m^3$, $\varphi = 20^\circ$, $H_2 = 6m$

OR

- 12. An embankment has a slope of 2H to 1V with a height of 20m. It is made of soil having cohesion of 38 kN/m² and an angle of internal friction of 20° and unit weight of 17.8 kN/m². Consider any failure circle passing through the toe. Use method of slices to find the factor of safety.
- 13. Explain in detail about
 - a. Buttressing for slope stabilization
 - b. Counterberms for slope stabilization

OR

- 14. Explain in detail about
 - a. Gravity retaining walls
 - b. Geosynthetically reinforced slopes
- 15. Elaborate any three methods of surface slope protection.

OR

OR

- 16. State any three alternate methods of slope stabilizing
- 17. Explain types of landslides and its mechanism

18. Explain

- a. Landslide rate and types of movements
- b. Correlation between landslides and rainfall
- 19. Discuss slope stability considerations of a landfill and Anchor trenches

OR

- 20. Discuss stability of landfills under following pretext
 - a. Cover system stability
 - b. Waste fill stability

2