APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER M.TECH DEGREE EXAMINATION
 Civil Engineering
 (Geomechanics And Structures)

04 CE 6301 - Applied Mathematics for Civil Engineers

PART A

Answer all questions.

Each question carries 3 marks

1. Show that $P_{n}(-1)=(-1)^{n}$
2. Find the Fourier cosine transform of $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}x \text { for } 0<x<1 \\ 2-x \text { for } 1<x<2 \\ 0 \text { for } x>2\end{array}\right.$
3. Define contraction of tensors.
4. Define Fredholm and Volterra integral equation.
5. Using D'Alembert's method, find the deflection of a vibrating string of unit length having fixed ends, with initial velocity zero and initial deflection $f(x)=a\left(x-x^{2}\right)$
6. Solve the partial differential equation $r=t$.
7. Give Newton cote's open type integration rules.
8. Apply Guass two-point formula to evaluate $\int_{0}^{\frac{\pi}{2}} \sin t d t$.

PART B

Each question carries 6 marks
9. Express $x^{3}+2 x^{2}-x-3$ in terms of Legendre polynomials. OR
10. Derive generating function for $J_{n}(x)$
11. Solve the differential equation using Laplace Transform $D^{2} x+9 x=\cos 2 t$. if $x(0)=1$, $\mathrm{x}(\pi / 2)=-1$ where D denote the derivative $\frac{d}{d t}$.
12. Solve $\frac{\partial u}{\partial t}=2 \frac{\partial^{2} u}{\partial x^{2}}$ if $u(0, t)=0, u(x, 0)=e^{-x}(x>0), u(x, t)$ is bounded where $x>0, t>0$.
13. A co-varient tensor has components $2 \mathrm{x}-\mathrm{z}, \mathrm{x}^{2} \mathrm{y}$, yz in Cartesian co-ordinate system.

Find its components in spherical co-ordinates.
(8)

OR

14. Show that any inner product of the tensors A_{r}^{p} and $B_{t}^{q s}$ is a tensor of rank three.
15. Solve the integral equation $\frac{d y}{d x}=3 \int_{0}^{x} \cos 2(x-t) y(t) d t+2$ given $y(0)=1$.

OR

16. By the method of successive approximations solve the integral equation

$$
y(x)=1+\tau \int_{0}^{1} x t y(t) d t
$$

17. Solve the Laplace equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$.

OR

18. An infinitely long plane uniform plate is bounded by two parallel edges and an end at right angles to them. The breadth is π; this end is maintained at a temperature u_{0} at all points and other edges are at zero temperature. Determine the temperature at any point of the plate in the steady-state.
19. Solve the following equations by Guass-elimination method

$$
x_{x}^{x-y+z=1,-3 x+2 y-3 z=-6,2 x-5 y+4 z=5} \quad \underset{+}{\text { OR }} \text { bbbv2 }
$$

Solve $\nabla^{2} u=0$ under the conditions $(h=1, k=1) u(0, y)=0, u(4, y)=12+y$ for $0 \leq y \leq 4$,
20.
$\mathrm{u}(\mathrm{x}, 0)=3 \mathrm{x}, \mathrm{u}(\mathrm{x}, 4)=\mathrm{x}^{2}$ for $0 \leq x \leq 4$.

