APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY
 FIRST SEMESTER M. TECH DEGREE EXAMINATION

Civil Engineering

(Structural Engineering and Construction Management)

04 CE 6401 ANALYTICAL METHODS IN ENGINEERING

PART A

Answer All Questions

Each question carries 3 marks

1. $\operatorname{Solve}\left(D^{3}-6 D^{2}+11 D-6\right) y=0$.
2. Find the integral curves of $\frac{d x}{x^{2}(y-z)}=\frac{d y}{y^{2}(z-x)}=\frac{d z}{z^{2}(x-y)}$
3. Solve $4 r-12 s+9 t=0$.
4. Derive solutions of Laplace's equation in two dimension.
5. Classify the equation $x^{2} u_{x x}+\left(1-y^{2}\right) u_{y y}=0$
6. Describe the rules for classifying a second order partial differential equation.
7. Derive Standard five point formula for solving Laplace equation.
8. Derive the solution of one dimensional wave equation by finite difference approximation.

PART B

Each question carries 6 marks

9. Solve $(D-2)^{2} y=8\left(e^{2 x}+\sin 2 x+x^{2}\right)$.

OR
10. Using the method of variation of parameters, solve $\left(D^{2}-1\right) y=\frac{2}{1+e^{x}}$.
11. Find the integral surface of the equation $(2 x y-1) p+\left(z-2 x^{2}\right) q=2(x-y z)$, which passes through the line $x=1, y=0$.

OR
12. Show that the equation $z=p x+q y$ is compatible with any equation $f(x, y, z, p, q)=0$ which is homogeneous in $\mathrm{x}, \mathrm{y}, \mathrm{z}$.
13. Solve $z p q=p+q$

OR
14. Solve $\left(D^{2}-3 D D^{\prime}+2{D^{\prime}}^{2}\right) z=\sin (x-2 y)+e^{x-y}$
15. A square plate is bounded by the lines $x=0, y=0, x=20, y=20$. Its faces are insulated. The temperature along the horizontal edge is given by $u(x, 20)=x(20-x), 0<x<20$, while other three edges are kept $0^{\circ} C$. Find the steady state temperature in plate.

OR
16. A string of length l is initially at rest in equilibrium position and each of its points is given the velocity $\left(\frac{\partial u}{\partial t}\right)_{t=0}=b \sin ^{3}\left(\frac{\pi x}{l}\right)$.
17. Derive the expression for first and second order partial derivatives of a function $u(x, y)$ by finite difference approximation.

OR

18. Classify the equation $\left(1+x^{2}\right) u_{x x}+\left(5+2 x^{2}\right) u_{x t}+\left(4+x^{2}\right) u_{t t}=0$.
19. Solve the equation $u_{x x}+u_{y y}=0$ subject to the conditions,

$$
u(0, y)=0,0 \leq y \leq 4 ; u(4, y)=12+y, 0 \leq y \leq 4 ; u(x, 0)=3 x, 0 \leq x \leq 4 ; u(x, 4)=x^{2}, 0 \leq x \leq 4 .
$$

OR
20. Solve the equation $u_{t t}=u_{x x}$ subject to $u(0, t)=u(4, t)=0 ; u(x, 0)=2 x-0.5 x^{2} ; u_{t}(x, 0)=0$,taking $h=1$ and t up to1.5.

