Reg. No.____

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION, JANUARY 2017

Course Code: CS 201

Course Name: DISCRETE COMPUTATIONAL STRUCTURES (CS, IT)

Max. Marks: 100

Duration: 3 Hours

(3)

PART A

Answer all questions. Each Question carries 3 marks

- 1. Show that $(A-B) C=A-(B \cup C)$
- 2. Show that the set of integers of positive, negative and zero are denumerable.
- 3. Show that if any five integers from 1 to 8 are chosen, then atleast two of them will have a sum 9.
- 4. Define: Partition, antisymmetric, Semigroup homomorphism.

PART B

Answer any two questions. Each Question carries 9 marks.

- 5. a. Prove that every equivalence relation on a set generates a unique partition of the set and the blocks of this partition corresponds to R-equivalence classes. (4.5)
 b.Let X = {1, 27 } and R = {< X,Y> / X-Y is divisible by 3}. Show that R is an equivalence relation. Draw the graph R. (4.5)
- 6. a. In how many ways can the letters of the word MONDAY be arranged? How many of them begin with M and end with Y?How many of them do not begin with M but end with Y?

b. Solve
$$a_{n+2} - 4 a_{n+1} + 4a_n = 2^n$$
, $a_0 = 1$, $a_1 = 1$ (5)

7. a. Draw Hasse diagram for D_{100} . Find GLB and LUB for $B=\{10, 20\}B=\{5, 10, 20, 25\}$

b. Let $X = \{1,2,3\}$ and f,g,h be function from X to X given by $f = \{(1,2), (2,3), (3,1)\}$ $g = \{(1,2), (2,1), (3,3)\}$ $h = \{(1,1), (2,2), (3,1)\}$. Find f og, goh, f o h o g. (3) c. In a class of 25 students, 12 have taken Mathematics, 8 have taken Mathematics but not Biology. Find the number of students who have taken Mathematics and Biology and those who have taken Biology but not Mathematics. (3)

PART C

Answer All Questions. Each Question carries 3 marks.

- 8. Show that inverse of an element a in the group is unique.
- 9. Show that $(G,+_6)$ is acyclic group where $G = \{0,1,2,3,4,5\}$
- 10. A= {2, 3, 4,6,12,18,24,36} with partial order of divisibility. Determine the POSET is a lattice.
- 11. Consider the lattice D_{20} and D_{30} of all positive integer divisors of 20 and 30 respectively, under the partial order of divisibility. Show that is a Boolean algebra.

PART D

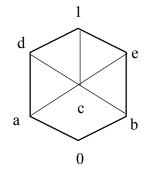
Answer any two Questions. Each Question carries 9 marks

- 12. a. Prove that the order of each subgroup of a finite group G is a divisor of the order of the group G. (4.5)
 b. Show that the set{ 0, 1, 2,3,4,5 } is a group under addition and multiplication modulo 6. (4.5)
- 13. a. Prove that every finite integral domain is a field. (4.5)

b. Show that (Z, θ, Θ) is a ring where a θ b = a+b-1 and a Θ b = a+b-ab (4.5)

- 14. a. Consider the Boolean algebra D₃₀.Determine the following:
 - i) All the Boolean sub-algebra of D_{30} .
 - ii) All Boolean algebras which are not Boolean sub-algebras of D_{30} having atleast four elements. (4.5)

b. Consider the Lattice L in the figure. Find the L is distributive and complemented lattice. Also find the complement of a,b,c. (4.5)



B

PART E

Answer any four Questions. Each Question carries 10 marks

- 15. a. Without using truth tables, prove the following (¬ P ∨Q) ∧ (P ∧ (P ∧ Q)) ≡ P ∧Q
 b. Show that ((P → Q) ∧ (Q → R)) → (P → R) is a tautology.
- 16. a. Convert the given formula to an equivalent form which contains the connectives \neg and \land only: \neg (P \leftrightarrow (Q \rightarrow (R \lor P)))
 - b. Show that $\neg P \land (\neg Q \land R) \lor (Q \land R) \lor (P \land R) \Leftrightarrow R$.
- 17. a. Show that S **v** R is tautologically implied by $(P \lor Q) \land (P \to R) \land (Q \to S)$
 - b. Prove the validity of the following argument "If I get the job and work hard, then I will get promoted. If I get promoted, then I will be happy. I will not be happy. Therefore, either I will not get the job or I will not work hard.
- 18. a. Prove that $(\exists x)(P(x) \land Q(x)) \Rightarrow (\exists x)(P(x)\land (\exists x)(Q(x)))$

b. Consider the statement "Given any positive integer, there is a greater positive integer". Symbolize this statement with and without using the set of positive integers as the universe of discourse.

19. a. Show that R \land (P \lor Q) is a valid conclusion from the premises P \lor Q, Q \rightarrow R, P \rightarrow M and \neg M.

b. Prove by mathematical induction that $6^{n+2}+7^{2n+1}$ is divisible by 43 for each positive integer n.

- 20. Discuss indirect method of Proof. Show that the following premises are inconsistent.
 - (i) If Jack misses many classes through illness, then he fails high school.
 - (ii) If Jack fails high School, then he is uneducated.
 - (iii) If Jack reads a lot of books, then he is not uneducated.
 - (iv) Jack misses many classes through illness and reads a lot of books.