APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER M.TECH DEGREE EXAMINATION Electronics and Communication Engineering (Telecommunications) 04 EC 6803 Random processes and Applications

Time: 3 hrs

Max. Marks: 60

(3)

PART A

(Answer all questions. Each question carry 3 marks).

1.	Describe continuous, discrete and mixed random variables	(3)
2.	Given that $B = \{X \le 10\}$ compute $F_X(x/B)$	(3)
3.	Show that $E(X + Y) = \mu_1 + \mu_2$ for jointly normal independent random variables	(3)
4.	Prove that sum of two Poisson process is a Poisson process	(3)
5.	Write a short note on white noise	(3)
6.	If X_1, X_2, \dots, X_n are Poisson variate with parameter $\lambda = 2$. Use central limit theorem to estimate $P(120 \le S_n \le 160)$ where $S_n = X_1 + X_2 + \dots + X_n$ and $n = 75$	(3)
_	3σ	

- 7. If the random variable X is uniformly distributed over $(-\sqrt{3}, \sqrt{3})$ compute $P[|x \mu| \ge \frac{3\delta}{2}]$ (3) and compare it with the upper bound obtained by Tcheycheff's inequality
- 8. Define WSS periodic process.

PART B

(Each full question carries 6 marks).

9. In a communication system a zero or one is transmitted with $P(X = 0) = \rho_0, P(X = 1) = (6)$ $1 - \rho_0$. Due to noise in channel zero can be received as 1 with probability β . A one is observed. What is the probability that one is transmitted

OR

- 10. The daily wages of 1000 workers are normally distributed around a mean of Rs 70 and and (6) with a standard deviation of rs 5. Estimate the number of workers whose daily wages will be (i) between 70 and 72 (ii) between 69 and 72 (iii) more than 75
- 11. Let X be a Bernoulli r.v with P(X = 0) = p and P(X = 1) = q and $f_X(x) = p\delta(x) + q\delta(x-1)$ (6) and $F_X(x) = pU(x) + qU(x-1)$ where U(x) is the unit step function. Calculate $F_Y(y)$ and $f_Y(y)$ for Y = X - 1

OR

- 12. If X and Y are independent random variables each following N(0,2). Prove that Z = X/Y (6) following Cauchy's distribution
- 13. Find the expectation of $Y = X^2$ with $X \sim N(0, \sigma^2)$ (6)

OR

14. Find the moment generating function and its two moments of Binomial distribution (6)

15. A vector X has covariance matrix $\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$ (6) design a transformer circuit that consist of adder and multipliers that will generate from X a new random vector Y whose components are uncorrelated

OR

- 16. Let $X = (X_1, X_2, X_3)^T$ denote the position of particle inside a sphere of radius 'a' centered (6) about the origin. Assume that at the instant of observation, the particle is equally likely to be any where in the sphere $f_X(X) = \frac{3}{4}\pi a^3$, $\sqrt{x_1^2 + x_2^2 + x_3^2} < a$, 0 else where. Compute the probability that particle lies within a sub sphere of radius 2a/3 contained within the larger sphere
- 17. State and prove chebyshev inequality.

OR

- 18. The life time of a certain brand of an electric bulb may be considered a random variable (6) with mean 1200h and standard deviation 250h. Find the probability, using central limit theorem that average lifetime of 60 bulbs exceeds 1250h
- 19. (i)Define Ergodicity.(ii)State and prove Mean-Ergodic theorem

OR

20. Prove that the random process $\{X(t)\}$ with constant mean is mean-ergodic if (6) $\lim_{n \to \infty} \left[\frac{1}{4T^2} \int_{-T}^{T} \int_{-T}^{T} C(t_1, t_2) dt_1 dt_2\right] = 0$

(6)

(6)