APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER M. TECH DEGREE EXAMINATION
 Computer Science and System Engineering

 04CS6401—Discrete structures for Computer Science

 04CS6401—Discrete structures for Computer Science}

Max. Marks : 60
Duration: 3 Hours
PART A
Answer All Questions

Each question carries 3 marks

1. Prove the identity $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
2. Define Complete Lattice with an example
3. Find the number of permutations of the letter of the word "MATHEMATICS"
4. Derive the expectation of Binomial distribution with parameters n and p .
5. Define a cyclic group and prove that every cyclic group is abelian.
6. Write the order of every element in $\left(\mathrm{Z}_{8},+\right)$
7. State and Prove Legrange's theorem on Groups
8. Find the multiplicative inverse of the matrix $\left[\begin{array}{ll}1 & 2 \\ 3 & 7\end{array}\right]$ in the ring $M_{2}(Z)$.

PART B

Each question carries 6 marks

9. Prove that if functions $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}, \mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ are invertible then gof $: \mathrm{A} \rightarrow \mathrm{C}$ is also invertible and $(g \circ f)^{-1}=f^{-1} o g^{-1}$

OR
10. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}-\{0\}$ defined by $\mathrm{f}(\mathrm{x})=\frac{1}{x}$. Show that f is bijective and find the inverse.
11. Explain Mathematical induction. Hence Show that $1+2+3+\ldots \ldots \ldots \ldots \ldots+\mathrm{n}=\frac{n(n+1)}{2}$ for all natural numbers n.

OR
12. Define Partial ordering Relation. Let $x, y \epsilon Z$, the modulo n relation R is defined by $x R y$ if $\mathrm{x}-\mathrm{y}$ is multiple of n , Check whether R is a partial ordering relation .
13. Explain soundness of propositional logic.

OR

14. Test the validity of an argument- "If I will select in IAS exam, then I will not be able to go to London. Since I am going to London, I will not select in IAS exam"
15. Determine the co-efficient of $x^{2} y^{2} z^{3}$ in the expansion of $(x+y+z)^{7}$

OR
16. Out of 200 families with 4 children each how many would you expect to have (a) atleast one boy (b) 1 or 2 girls.
17. Check whether the set of all non singular $n x n$ matrices with integer entries under matrix Multiplication is a group

OR

18. a. Prove that a group is abelian if and only if $(a . b)^{-1}=a^{-1} \cdot b^{-1}$
b. Prove that inverse of every element in a group is always unique.
19. Check whether $\left(Z_{5},+_{5}, X_{5}\right)$ is a Commutative Ring with unity. Is $\left(Z_{n},+_{n}, X_{n}\right)$ a Field for every n. Justify your answer.

OR
20. Is the element 25 a unit in Z_{72}. If so find the multiplicative inverse.

