\qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

First Semester m.tech Degree Examinations, December 2018
Branch: Civil Engineering
(Specialization: Geomechanics and Structures)
04CE 6301 - Applied Mathematics for Civil Engineers
(Note: Non-programmable calculators may be permitted)

Time: Three hrs
Max. Marks: 60

PART A

(Answer all questions. Each question carries 3 marks)

1. Calculate the Bessel's function $\mathscr{J}_{1 / 2}(x)$.
2. Find $\mathscr{L}(t \sin a t)$.
3. Develop the first order general contravariant Tensor of rank 1.
4. Form the dynamic equation corresponding to $y(x)=\int_{0}^{x}(x+t) y(t) d t+1$.
5. Solve $r=t$ using Monges Method.
6. Using d Alembert's method find the deflection of a beam of unit length having fixed ends with initial velocity zero and initial deflection $f(x)=k x$.
7. Evaluate the area bounded by a surface $\frac{1}{1+x^{2}}$ in $(0,1)$ numerically with six partitions.
8. Solve $20 x+y-2 z=17,3 x+20 y-z=-18,2 x-3 y+20 z=25$ using Gauss- Siedal iterative method.

PART B

(Answer all questions. Each full question carries 6 marks)
9. Solve the Bessel's equation $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-n^{2}\right) y=0$

OR
10. (a) Prove that $\left(1-2 x t+t^{2}\right)^{-1 / 2}=\sum_{n=0}^{\infty} t^{n} P_{n}(x)$, where $P_{n}(x)$ represents the Legendre Polynomial.
(b) Express $x^{4}+3 x^{3}-x^{2}+5 x-2$ in terms of Legendre Polynomials.
11. (a) Find the Fourier transform of $f(x)= \begin{cases}1 & ;|x|<1 \\ 0 & ;|x|>1\end{cases}$
(b) Show that $\mathscr{F}_{s}(x f(x))=-\frac{d}{d s} \mathscr{F}_{c}(s)$.
12. (a) Find $\mathscr{L}\left(\frac{\cos a t-\cos b t}{t}\right)$
(b) Solve $y^{\prime \prime \prime}+2 y^{\prime \prime}-y^{\prime}-2 y=0$, where $y(0)=y^{\prime}(0)=0, y^{\prime \prime}(0)=6$.
13. (a) Show that $a_{i j} A^{k j}=\Delta \delta_{i}^{k}$, where Δ is the determinant and $A^{i j}$ s are cofactors of $a_{i j}$.
(b) Expand the sum $a_{i j} x^{j}$ using the summation principle.

> OR
14. (a) Prove that the following transformation T is admissible and find their respective inverse.

$$
T= \begin{cases}y^{1} & =x^{1} \sin x^{2} \cos x^{3} \tag{3}\\ y^{2} & =x^{1} \sin x^{2} \cos x^{3} \\ y^{3} & =x^{1} \cos x^{3}\end{cases}
$$

(b) Develop the covariant and contravariant tensors with suitable mathematical analogy.
15. (a) Show that $y=2-x$ is a solution of $\int_{0}^{x} e^{x-t} y(t) d t=e^{x}+x-1$.
(b) Solve $y(x)=3 x^{2}+\int_{0}^{x} \cos (x-t) y(t) d t$.

OR

16. (a) Solve $\frac{d y}{d x}+3 y+2 \int_{0}^{x} y d x=x$, where $y(0)=0$.
(b) Using the method of successive approximation, solve the Fredholm integral equation

$$
y(x)=1+x+\int_{0}^{x}(x-t) y(t) d t
$$

17. (a) Solve by Monges method $(x-y)(x r-y s+y t)=(x+y)(p-q)$
(b) Using d' Alembert's method, find the deflection of a vibrating string of unit length having fixed ends, with initial velocity zero and initial deflection $f(x)=a\left(x-x^{2}\right)$.

OR

18. An infinitely long plane uniform plate is bounded by two parallel edges and an end at right angle to them. The breadth is π; this end is maintained at a temperature u_{0} at all points and other edges are at zero temperature. Determine the temperature at any point x of the plate in the steadystate.
19. (a) Solve

$$
\begin{aligned}
& x+4 y-z=-5 \\
& x+y-6 z=-12 \\
& 3 x-y-z=4
\end{aligned}
$$

(b) Solve the system of non-linear equations

$$
\begin{aligned}
& x^{2}+y=11 \\
& y^{2}+x=7
\end{aligned}
$$

OR
20. (a) Solve using Gauss-Siedal iteration method

$$
\begin{aligned}
20 x+y-2 z & =17 \\
3 x+20 y-z & =-18 \\
2 x-3 y+20 z & =25
\end{aligned}
$$

(b) A solid of revolution is formed by rotating about the x-axis, the area between the x-axis, the lines $x=0$ and $x=1$ and the curve through the points with the following co-ordinates

$\mathrm{x}:$	0.00	0.25	0.50	0.75	1.00
$\mathrm{y}:$	1.0000	0.9896	0.9589	0.9089	0.8415

