APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER M. TECH DEGREE EXAMINATION

Electronics \& Communication Engineering

(Telecommunication Engineering)
04EC6801-Applied Linear Algebra

Max. Marks : 60
Duration: 3 Hours

PART A
 Answer All Questions
 Each question carries 3 marks

1. Express the vector $v=(1,-2,5)$ as a linear combination of the vectors $v_{1}=(1,1,1), v_{2}=(1,2,3)$, $v_{3}=(2,-1,1)$.
2. Explain the row-reduced echelon form.
3. Find the inverse of the linear transformation $T: R^{3} \rightarrow R^{3}$ is defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{1}+3 x_{2}+x_{3}, 3 x_{1}+3 x_{2}+x_{3}, 2 x_{1}+4 x_{2}+x_{3}\right)$.
4. Find a unit vector orthogonal to $v_{1}=(1,1,2)$ and $v_{2}=(0,1,3)$ in R^{3}.
5. Explain the properties of eigen values.
6. Determine the eigen values of $\mathrm{A}=\left[\begin{array}{ccc}-1 & 2 & 1 \\ 0 & 1 & -1 \\ 0 & 2 & -2\end{array}\right]$ and their algebraic multiplicity.
7. Explain range and rank of AA^{T} and $\mathrm{A}^{\mathrm{T}} \mathrm{A}$ with example.
8. Explain Pseudo inverse of a matrix using SVD.

PART B

Each question carries 6 marks

9. Find the dimension and basis for column space of the matrix $A=\left[\begin{array}{ccccc}-1 & 2 & -1 & 5 & 6 \\ 4 & -4 & -4 & -12 & -8 \\ 2 & 0 & -6 & -2 & 4 \\ -3 & 1 & 7 & -2 & 12\end{array}\right]$.

OR
10. a) Show that the vector $\left[\begin{array}{c}20 \\ 4\end{array}\right]$ belongs to span of $\left\{\left[\begin{array}{l}1 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 5\end{array}\right]\right\}$
b) Prove that the vectors $(1,-1,1),(0,1,2)$ and $(3,0,-1)$ form a basis for R^{3}.
11. Find the least square solution to the matrix equation $\left[\begin{array}{cc}2 & -2 \\ -2 & 2 \\ 5 & 3\end{array}\right] X=\left[\begin{array}{c}-1 \\ 7 \\ -26\end{array}\right]$ using pseudo inverse method.

OR

12. Find the values of ' λ ' for which the system of equations $x+y+z=1, x+2 y+4 z=\lambda, x+4 y+10 z=\lambda^{2}$ will be consistent and also show that for each value of ' λ ' the system has a one parameter family of solutions and find these solutions.
13. Find the four fundamental sub spaces of the given matrix $A=\left[\begin{array}{ccccc}1 & -2 & -1 & 3 & 2 \\ 2 & -2 & -3 & 6 & 1 \\ -1 & -4 & 4 & -3 & 7\end{array}\right]$.

OR
14. Given bases of $R^{2}: S_{1}=\left(u_{1}=(1,-2), u_{2}=(3,-4)\right)$ and $S_{2}=\left(v_{1}=(1,3), v_{2}=(3,8)\right)$. Find the change of basis matrix from S_{1} to S_{2} and find the change of basis matrix from S_{2} back to S_{1}.
15. Find the orthonormal basis of the subspace ' W ' of R^{5} spanned by $v_{1}=(1,1,1,0,1), v_{2}=(1,0,0,-1,1)$, $\mathrm{v}_{3}=(3,1,1,-2,3), \mathrm{v}_{4}=(0,2,1,1,-1)$.

OR
16. Find a basis for W^{\perp} where $\mathrm{W}=\operatorname{span}\left\{\left[\begin{array}{c}1 \\ -5 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 1\end{array}\right]\right\}$.
17. Compute eigen vectors of the matrix $A=\left[\begin{array}{ccc}4 & 6 & 10 \\ 3 & 10 & 13 \\ -2 & -6 & -8\end{array}\right]$.

OR
18. Diagonalize the given matrix $A=\left[\begin{array}{lll}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right]$.
19. Find SVD for the matrix $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right]$.

OR
20. Find the pseudo inverse of the matrix $A=\left[\begin{array}{cc}2 & -2 \\ -1 & 2 \\ 5 & 3\end{array}\right]$ using SVD.

