APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY
 FIRST SEMESTER M. TECH DEGREE EXAMINATION

Civil Engineering

(Structural Engineering and Construction Management)

04 CE 6401 ANALYTICAL METHODS IN ENGINEERING

PART A
 Answer All Questions
 Each question carries 3 marks

1. $\operatorname{Solve}\left(D^{4}-5 D^{2}+4\right) y=0$.
2. Write a short note on compatible system of first order equations.
3. Solve $\left(D+2 D^{\prime}\right)\left(D-3 D^{\prime}\right)^{2} z=0$.
4. Derive solutions of Laplace's equation in two dimension.
5. Classify the equation $f_{x x}+2 f_{x y}+f_{y y}=0$
6. Discuss the rules for classifying a second order partial differential equation.
7. Discuss Liebmann's iteration technique for solving Laplace equation numerically.
8. Derive the solution of one dimensional wave equation by finite difference approximation.

PART B

Each question carries 6 marks

9. $\operatorname{Solve}\left(D^{2}-2 D+1\right) y=x e^{x} \sin x$.

OR
10. Using the method of variation of parameters, solve $\left(D^{2}-2 D+2\right) y=e^{x} \tan x$.
11. Find the integral surface of the equation $2 y(z-3) p+(2 x-z) q=y(2 x-3)$, which passes through the circle $x^{2}+y^{2}=2 x, z=0$.

OR
12. Show that the equation $z=p x+q y$ is compatible with any equation $f(x, y, z, p, q)=0$ which is homogeneous in $\mathrm{x}, \mathrm{y}, \mathrm{z}$.
13. Solve $2 z x-p x^{2}-2 q x y+p q=0$.

OR

14. Solve $\left(D^{3}-2 D^{2} D^{\prime}\right) z=2 x^{2} y$.
15. Solve $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ within the rectangle

$$
0 \leq x \leq a ; 0 \leq y \leq b ; u(0, y)=0 ; u(a, y)=0 ; u(x, b)=0 ; u(x, 0)=x(a-x)
$$

OR
16. A string is stretched between the fixed points $(0,0)$ and $(L, 0)$ and released at rest from the initial deflection given by $f(x)=\left\{\begin{array}{c}\frac{2 k x}{L}, 0<x<\frac{L}{2} \\ \frac{2 k(L-x)}{L}, \frac{L}{2}<x<L\end{array}\right.$,Find the deflection of the string at ant time t .
17. Derive the expression for first and second order partial derivatives of a function $u(x, y)$ by finite difference approximation.

OR

18. Classify the equation $y^{2} u_{x x}-2 x y u_{x y}+x^{2} u_{y y}+2 u_{x}-3 u=0$.
19. Find the values of $\mathrm{u}(\mathrm{x}, \mathrm{y})$ satisfying $u_{x x}+u_{y y}=0$ at the pivotal points of the square region, with boundary values as shown

OR
20. Solve the equation $u_{t t}=16 u_{x x}$ subject to

$$
u(0, t)=u(4, t)=0, u_{t}(x, 0)=0, u(x, 0)=x^{2}(4-x) \text { taking } h=1 \text { and } \mathrm{t} \text { up to1.5. }
$$

