\qquad
Reg. No:.

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

First Semester M.tech Degree Examination
Inter-disciplinary Engineering

(Robotics and Automation Engineering)
04EC6901 - Advanced Mathematics \& Optimization Techniques

Time: Three hrs
Max. Marks: 60

PART A
 (Answer all questions. Each question carry 3 marks).

1. Let H be the set of all vectors of the form $\left[\begin{array}{c}3 a+b \\ 4 \\ a-5 b\end{array}\right]$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are arbitary scalars. Check whether it is a vector space?
2. Let $V=R[x]$ be a vector space of all polynomials over R such that $D: V \rightarrow V$ be the mapping associating each polynomial $f(x)$ to its derivative $\frac{d}{d x} f(x)$. Show that D is a linear transformation.
3. Define an orthogonal and orthonormal sets.
4. Explain the basic assumptions of a linear programming problem
5. Solve the following LPP graphically

$$
\begin{array}{r}
\text { Maximise } z=6 x_{1}+8 x_{2} \\
\text { Subject to } 5 x_{1}+10 x_{2} \leq 60 \\
4 x_{1}+4 x_{2} \leq 40 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

6. Distinguish between integer programming problem and linear programming problem. Give examples
7. Consider the capital budgeting problem where 5 projects are being considered for execution over the next 3 years. The expected returns for each project and the early expenditure are shown below. Assume that each approved project will be executed over the 3-year period. The objective is to select a combination of projects that will maximise the total returns

Expenditure for				
Project	Year 1	Year 2	Year 3	Returns
1	6	2	6	40
2	2	5	8	25
3	5	6	3	40
4	6	3	4	20
5	8	7	5	25
Max: funds	20	20	20	-

Formulate the problem as a zero - one integer programming problem.
8. State Kuhn-Tucker conditions for a non linear programming problem having a maximization objective function

PART B (Answer all questions)

9. Determine whether $S=\left\{(x, y, z) \in R^{3} / y=0\right\}$ is a vector space under regular addition \& scalar multiplication.

OR
10. Let V be a vector space of 2×2 matrix over R. Let W be a subspace of a symmetric matrix. Find the dimension of W and its basis.
11. Find matrix representation of linear transformation $T: M_{2 \times 2} \rightarrow M_{2 \times 2}$ defined by $T\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}a+2 b+3 c & 2 b-3 c+4 d \\ 3 a-4 b-5 d & 0\end{array}\right]$ with respect to the standard basis.

OR
12. Consider the matrix mapping $A: R^{4} \rightarrow R^{3} ; A=\left[\begin{array}{cccc}1 & 2 & 3 & 1 \\ 1 & 3 & 5 & -2 \\ 3 & 8 & 13 & -3\end{array}\right]$. Find the basis \& dimension of image of $A \&$ kernel of A.
13. Find a least square solution of $A X=B$ where $A=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{c}-3 \\ -1 \\ 0 \\ 2 \\ 5 \\ 1\end{array}\right]$

OR
14. Apply Gram-Schmidth orthogonalisation process to the basis
$B=\{(1,1,1,1),(1,2,4,5),(1,-3,-4,-2)\}$ of the inner product space R^{4} to find orthogonal $\&$ orthonormal basis of R^{4}.
15. Solve using simplex method
16. Find the optimum feasible solution using Big M method.

$$
\begin{aligned}
& \operatorname{Min} \mathrm{z}=7 x_{1}+15 x_{2}+20 x_{3} \\
& \text { subject to } 2 x_{1}+4 x_{2}+6 x_{3}
\end{aligned} \quad \geq 24, ~ \begin{aligned}
3 x_{1}+9 x_{2}+6 x_{3} & \geq 30 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

17. Solve the following integer programming problem optimally using branch-and-bound technique.

$$
\begin{aligned}
\operatorname{Max} \mathrm{z}=5 x_{1}+4 x_{2} & \\
\text { Subject to } x_{1}+x_{2} & \leq 5 \\
10 x_{1}+6 x_{2} & \leq 45 \\
x_{1}, x_{2} & \geq 0 \text { and integers }
\end{aligned}
$$

OR
18. Solve the following $0-1$ programming problem

$$
\begin{array}{r}
\text { Max } \mathrm{Z}=3 x_{1}+2 x_{2}-x_{3}-2 x_{4}+3 x_{5} \\
\text { Sub to } \quad x_{1}+x_{2}+x_{3}+2 x_{4}+x_{5} \leq 4 \\
7 x_{1}+3 x_{3}-4 x_{4}+3 x_{5} \leq 8 \\
11 x_{1}-6 x_{2}+3 x_{4}-3 x_{5} \geq 3 \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in 0,1
\end{array}
$$

19. Solve the non linear programming problem using Lagrangian method

$$
\begin{align*}
& \text { Maximise } z=4 x_{1}-0.02 x_{1}{ }^{2}+x_{2}-0.02 x_{2}{ }^{2} \tag{6}\\
& \text { Subject to } x_{1}+2 x_{2}=120 \\
& x_{1}, x_{2} \geq 0
\end{align*}
$$

OR
20. Solve the following using Kuhn-Tucker conditions

$$
\begin{array}{r}
\text { Maximise } z=x_{1}^{2}+x_{1} x_{2}-2 x_{2}^{2} \tag{6}\\
\text { Subject to } 4 x_{1}+2 x_{2} \leq 24 \\
5 x_{1}+10 x_{2} \leq 30 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

