Reg No.:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER M.C.A. DEGREE EXAMINATION, DECEMBER 2018

Name:

Course Code: RLMCA109

Course Name: DIGITAL FUNDAMENTALS

Max. Marks: 60

Duration: 3 Hours

PART A Answer all questions, each carries 3 marks.

	PART B	
8	What is a synchronous counter?	(3)
	statement	
7	Asynchronous counters are also known as Ripple Counters. Justify the	(3)
6	How can you convert SR flip flop to D flip flop	(3)
5	Differentiate between multiplexer and demultiplexer.	(3)
4	Design a full subtractor using NAND gate.	(3)
3	Prove that (A+B)(A+C)=A+BC	(3)
2	Convert B + CD + ABCD into standard SOP	(3)
1	Convert (3287.6875) ₁₀ to Octal and Binary	(3)

Answer six questions, one full question from each module and carries 6 marks.

Module I

9	a	Convert $3.5164 * 10^4$ into single precision binary floating point representation	(3)

Write the sign magnitude, 1's complement, 2's complement representations of b (3) 49, -49

OR

- A=111100,B=101; Perform the operations A/B,A-B 10 a (3)
 - Add 49 + -23 in 2's complement form b

(3)

Module II

11 What is K-Map? Minimize the function $f(A,B,C,D) = \sum (1,3,5,7,11,13)$ (6) +d(2,14,15) using K-Map

OR

Marks

12 In a seven segment display, each of the seven segments is activated for various (6) digits. Derive a minimal SOP for segment c

Module III

13	What is a Decoder? Implement a full Adder using decoder	(6)
	OR	
14	Implement the function $f(A,B,C,D)=\sum(3,5,8,12,14)$ using a 8:1 MUX	(6)
	M - J1 - XX7	
	Niodule I v	
15	What is a flipflop? Explain the working of a edge triggered J-K flipflop in	(6)
	detail.	
	OR	
16	Differentiate Combinational and Sequential Circuits. Realize a master slave J-K	(6)
	flipflop using NAND gate and explain its working.	
	Module V	
17	Draw a synchronous decade counter using JK flip flop and explain its working.	(6)
	OR	
18	Draw a 4 bit Asynchronous Binary Counter and explain its working. Develop a	(6)
	timing diagram showing Q output of each flip flop.	
	Module VI	
19	With a block diagram, explain the basic components of a computer.	(6)
	OR	
20	Explain the components in an Arduino board	(6)
