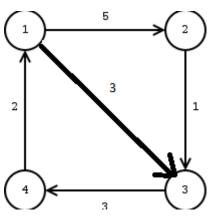
## M3003

| U     | 1415005                                                                                                                           | rages. 2  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------|-----------|
| Reg 1 | No.: Name:                                                                                                                        |           |
| FI    | APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY<br>RST SEMESTER MCA (Second Year Direct) DEGREE EXAMINATION, DECEI<br>2018               | MBER      |
|       | Course Code: RLMCA 207                                                                                                            |           |
|       | <b>Course Name: DESIGN AND ANALYSIS OF ALGORITHMS</b>                                                                             |           |
| Max.  |                                                                                                                                   | : 3 Hours |
|       | PART A<br>Answer all questions, each carries 3 marks                                                                              | Marks     |
| 1     | Differentiate Time and space complexity.                                                                                          | (3)       |
| 2     | Discuss the control abstraction of Divide and Conquer Approach.                                                                   | (3)       |
| 3     | Explain the control abstraction of Greedy Approach.                                                                               | (3)       |
| 4     | State the principle of optimal substructure with example.                                                                         | (3)       |
| 5     | Define Live node, Dead node and E-node in branch & bound techniques.                                                              | (3)       |
| 6     | Apply backtracking technique for solve the following instance of Subset sun                                                       |           |
| -     | problem w= $\{3,4,5,6\}$ and d=9                                                                                                  | - (-)     |
| 7     | Discuss the control abstraction of Branch and Bound Technique.                                                                    | (3)       |
| 8     | Differentiate Tractable and Intractable problem.                                                                                  | (3)       |
|       | PART B                                                                                                                            |           |
|       | Answer six questions, one full question from each module and carries 6 marks                                                      | 5.        |
|       | Module I                                                                                                                          |           |
| 9     | Explain asymptotic notations and its properties with a suitable example.                                                          | (6)       |
|       | OR                                                                                                                                |           |
| 10    | Solve the recurrence relations given below using Masters theorem.                                                                 | (6)       |
|       | 1. $T(n)=T(n/2) + n^2$                                                                                                            |           |
|       | 2. $T(n)=2T(n/2) + n/\log n$                                                                                                      |           |
|       | Module II                                                                                                                         |           |
| 11    | Write the algorithm for Quick Sort and sort the elements 50, 30, 80,5,90 using                                                    | (6)       |
|       | it.                                                                                                                               |           |
|       | OR                                                                                                                                |           |
| 12    | Discuss recursive algorithm and derive the time complexity to determine the maximum and minimum for the following set of numbers. | (6)       |
|       | 44, 13, 6, 7, 20, 60, 18, 35, 79.                                                                                                 |           |
|       |                                                                                                                                   |           |

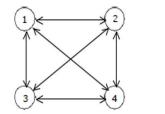
Module III

13 Explain Kruskals Algorithm for MST with an example. (6)


(6)

## OR

Solve Job sequencing problem in greedy approach 14


| Job      | J1        | J2  | J3 | J4 | J5 |  |
|----------|-----------|-----|----|----|----|--|
| Deadline | 2         | 1   | 3  | 2  | 1  |  |
| Profit   | 60        | 100 | 20 | 40 | 20 |  |
|          | Module IV |     |    |    |    |  |

Find out shortest path from 1 to 4 using All-Pairs shortest path for the graph 15 (6) below.



## OR

Solve TSP for the graph given below. 16



|                             | Γo | 10 | 15 | 20 |
|-----------------------------|----|----|----|----|
| The cost adjacency matrix = | 5  | 0  | 9  | 10 |
|                             | 6  | 13 | 0  | 12 |
|                             | 8  | 8  | 9  | 0  |

## Module V

Explain N Queens problem and discuss the solution based on back tracking 17 (6) algorithm.

OR

Prove that Vertex Cover problem is NP Complete. 20 (6) \*\*\*\*

(6)