**Duration: 3 Hours** 

# **APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY**

Scheme for Valuation/Answer Key

Scheme of evaluation (marks in brackets) and answers of problems/key

EIGHTH SEMESTER B.TECH DEGREE EXAMINATION, MAY 2019

**Course Code: EE464** 

Course Name: Flexible AC Transmission Systems

Max. Marks: 100

## PART A

#### Answer all questions, each carries 5 marks. M

- 1 Definition (2Marks). Devices names (3 Marks)
- 2 Reactive power compensation at load centre, Shunt reactive power (5) compensation by capacitor or DSTATCOM (3), Voltage profile of radial line for different loading levels (2),
- 3 Methods for controllable static VAR generation Impedance type( switching (5) in and out capacitor and inductor), Converter type( injecting voltage in series or drawing or injecting current), series, Shunt methods (5)
- 4 The basic concept of voltage and phase angle regulation is the *addition of an* (5) appropriate in-phase or a quadrature component to the prevailing terminal voltage.(2) addition of an appropriate in-phase voltage –Voltage regulator, addition of an appropriate quadrature component voltage- Phase angle regulator, phasor (3)
- 5 Schematic, Principle of shunt current injection, Equation, (2+2+1) (5)
- 6 Schematic of SSSC and Series Capcitor compensation (2) Phasor (1) (5) In contrast to the series capacitor, the sssc is able to maintain a constant compensating voltage in the presence of variable line current. It can control the amplitude of the injected compensating voltage (Vq) independent of the amplitude of the line current.(2)
- 7 voltage, impedance, and phase angle, active power flow, reactive power (5) (1+1+1+1+1)
- 8 IPFC schematic (2) Working (3)

## PART B

## Answer any two full questions, each carries 10 marks.

9 Series capacitor compensation (2), Equation for active and reactive power (10)

Marks

(5)

(5)



|    |    | flow(2+2), active power flow(2) reactive power plot with power angle and                  |      |
|----|----|-------------------------------------------------------------------------------------------|------|
|    |    | explanation (2)                                                                           |      |
| 10 |    | Comparison with V I characteristics and explanation of STATCOM, TCR, TSC,                 | (10) |
|    |    | and SSSC, TCSC (5+5)                                                                      |      |
| 11 |    | Equal area criterion- stability limit with compensation and without                       | (10) |
|    |    | compensation (5) explanation(5)                                                           |      |
|    |    | PART C                                                                                    |      |
|    |    | Answer any two full questions, each carries 10 marks.                                     |      |
| 12 |    | Schematics and VI characteristics, explanation TCR (3)                                    | (10) |
|    |    | Schematics and VI characteristics, explanation TSC (3)                                    |      |
| 13 | a) | Schematics and Q characteristics, explanation FC-TCK (4)<br>Schematic (4) Explanation (3) | (7)  |
| 15 | a) | Schematic (4) Explanation (5)                                                             | (r)  |
|    | b) | Phasor                                                                                    | (3)  |
| 14 | a) | VI characteristics of TCSC- voltage control (2) reactance control(2)                      | (4)  |
|    | b) | TCSC schematics (3) explanation(3)                                                        | (6)  |
|    |    | PART D                                                                                    |      |
|    |    | Answer any two full questions, each carries 10 marks.                                     |      |
| 15 |    | Neat Schematic(5) Explanation (5)                                                         | (10) |
| 16 | a) | Schematic (4)                                                                             | (4)  |
|    | b) | Role of series converter- series voltage injection, series compensation, reactive         | (6)  |
|    |    | power compensation, active power compensation with dc link and series                     |      |
|    |    | converter, shunt converter- Current injection or drawing, reactive compensation,          |      |
|    |    | Active power supply to DC link and DC link- extraction of active power                    |      |
|    |    | demanded by series converter from ac line through shunt converter. (2+2+2)                |      |
| 17 |    | Comparison of features and VI characteristics(5x2)                                        | (10) |
|    |    | ****                                                                                      |      |