

Pages 3

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Scheme for Valuation/Answer Key

Scheme of evaluation (marks in brackets) and answers of problems/key

SEVENTH SEMESTER B.TECH DEGREE EXAMINATION (S), MAY 2019

Course Code: CE403

Course Name: STRUCTURL ANALYSIS - III

Max. Marks: 100

1

G1032

Duration: 3 Hours

PART A Answer any two full questions, each carries 15 marks. Marks (a) Two assumptions (2)(b) Column shear -3 (13)Column moment - 2 Beam moment - 2 Beam shear -2 Axial force -1 Figure - 3 (a) Definition of static indeterminacy – 1 mark 2 (5) Definition of external indeterminacy – 1 mark Definition of internal indeterminacy – 1 mark Two examples -2 mark (b) Concept -4 marks (5) Example – 1 mark (a) Definition -2 mark (5) Equation – 1 mark Dk = -2 markProcedure for analysis by flexibility matrix – 5 marks (10)3 a) Procedure for analysis by stiffness matrix - 5 marks External indeterminacy – 1 mark **b**) (5) Internal indeterminacy of pin jointed frame -2 marks Internal indeterminacy of rigid jointed frame – 2 marks

PART B

Answer any two full questions, each carries 15 marks.

Flexibility matrix and deflection due to applied load matrix can be developed from 4 a) (8)that of constituent elements by using Flexibility method. Approach in which

G1032

G	1032	I ages	5	
		matrix for entire structure are obtained from respective matrices for constituent		
		elements is known as element approach. (3)		
		Forming equation[P _R [*]]=[f][P}		
		$[P_R^*]$ is forces in released structure in element coordinates		
		[f] is force transformation matrix		
		[P} is force in system coordinates(
		Elements of jth column of force transformation matrix are formed by applying unit		
		force at system coordinate j. Forces at element coordinates may be determined by		
		considering free bodies of elements (5)		
	b)	Determine internal and external redundancy (2)	(7)	
		Identify no of redundant reactions equal to degree of indeterminancy (1)		
		Make the structure determinate by removing redundant reactions (1)		
		Apply unit unit load in the directions of redundant load. Find elements of		
		flexibility coefficient matrix (2)		
		Find forces in members using compatibity condition		
		$[\delta] [P] = [\Delta] - [\Delta L] (1)$		
5	a)	Static indeterminacy (1mark)	(15)	
		Equivalent joint loads (2mark)		
		Equilibrium matrix equation (2mark)		
		Element flexibility matrix (2mark)		
		BMD (4 marks)		
		SFD (4marks)		
6	a)	Definition (2 mark) For each give one mark each $(1 \times 3 = 3 \text{ marks})$	(5)	
	b)	Formulation of displacement transformation matrix (5 marks)	(10)	
		Finding K (3 marks)		
		Final forces (2 marks)		
		PART C		
Answer any two full questions, each carries 20 marks.				
7	a)	Divide the structure into elements, mark DOF, Element stiffness matrix K _e , Global	(5)	
		Stiffness Matrix K_G , Equivalent joint load matrix P, Solve for Δ , Member forces		
	1 \		(1 =)	

b) Derivation of global stiffness matrix K_G from $K_{elements} - 4$ (15) Modification of K_G by applying BCs -2Equivalent joint loads -6

G1032		Pages	3			
	Calculation of Δ using P=K _G . Δ	- 2				
	Member forces	- 1				
8 a)	ffness method, using kinematic	(5)				
	redundancy, global stiffness matrix from element stiffness, transformation from					
	local axes to global axis					
b)	ents - 4	(15)				
	Modification of K _G by applying BCs	- 1				
	Equivalent joint loads	- 6				
	Calculation of Δ using P=K _G . Δ	- 2				
	Member forces	- 2				
9 a)	$m\ddot{x}+c\dot{x}+kx=0.$		(5)			
	$m\ddot{x} + c\dot{x} + kx = F_0 \sin{(2\pi ft)}$. for damped (2.5	marks)				
	Write for undamped also (2.5 marks)					
	Total 5 marks					
b)	Start from free body diagram	1 marks	(15)			
	Derivation of the equation $m\ddot{x}+c\dot{x}+kx=0.$	10 marks				
	Response diagram	4 marks				
	Total	15 marks				
