

G1096 Pages 3

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Scheme for Valuation/Answer Key

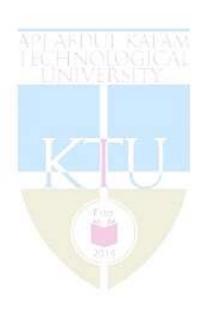
Scheme of evaluation (marks in brackets) and answers of problems/key

SEVENTH SEMESTER B.TECH DEGREE EXAMINATION (S), MAY 2019

Course Code: AE409

Course Name: OPTICAL INSTRUMENTATION

Max. Marks: 100 Duration: 3 Hours						
PART A						
Answer any two full questions, each carries 15 marks. Marks						
1	a)	Illustrate the principle behind light propagation through an optical fiber with	(5)			
		necessary diagrams.				
		Diagram – 2 marks; Explanation – 3 marks				
	b)	Define Numerical Aperture of an optical fiber. Also derive the expression for	(5)			
		numerical aperture.				
		Definition – 2 marks; Derivation – 3 marks				
	c)	Differentiate between step index and graded index fiber.	(5)			
		Any 5 comparisons with diagram – 5 marks				
2	a)	With necessary diagrams explain the operation of a PIN photo diode.	(5)			
		Diagram – 2 marks; Explanation – 3 marks				
	b)	Calculate the V number and number of modes propagating through the fiber	(4)			
		having $a = 70 \mu m$, $n_1 = 1.59$, $n_2 = 1.52$ and $\lambda = 1 \mu m$.				
		V number – 2 marks; No. of modes – 2 marks				
	c)	What is splicing? Mention different types. Explain fusion splicing with neat	(6)			
		diagram.				
		Splicing – 2; types – 1 mark; Fusion splicing diagram – 1; explanation – 2 marks				
3	a)	How can distance be measured using interferometers?	(7)			
		Diagram – 3 marks; Explanation – 4 marks				
	b)	Give a short note on fiber optic connectors.	(3)			
		Explanation with diagram – 3 marks				
	c)	Explain the measurements of current using fiber optic sensors?	(5)			
		Diagram – 2 marks; Explanation – 3 marks				
PART B						
Answer any two full questions, each carries 15 marks.						
4	a)	Describe the working of a Fabry- Perot interferometer with a neat diagram.	(7)			


Pages 3

G1096

 $Diagram - 3.5 \ marks$; $Explanation - 3.5 \ marks$ b) A Fabry- Perot interferometer has a 1 cm spacing and a reflection coefficient of r (8) = 0.9. For a wavelength of 500 nm, Calculate: (i) Mode number (ii) Finesse, Minimum resolvable wavelength interval and (iii) (iv) Resolving power. Each part carries 2 marks -4x2=8 marks a) Flatness testing can be done using interferometry. How it is done? (6) $Diagram - 3 \ marks$; $Explanation - 3 \ marks$ b) Explain the role of a beam splitter in interferometry with neat diagram. (4) $Diagram - 1 \ mark; Explanation - 3 \ marks$ c) What are the properties of Laser? (5) *Properties with explanation – 5 marks* a) Why population inversion is needed for lasing? (5) Definition – 1 marks; Explanation with proper diagrams – 4 marks b) Classify laser according different criteria. (5) *Depends on output, active medium, level – 5 marks* c) What is the principle of Q-switching? Mention its advantages. (5) Principle – 2 marks; Advantages – 3 marks PART C Answer any two full questions, each carries 20 marks. How lasers are being engaged in the detection and estimation of atmospheric 7 a) (10)pollutants? *Diagrams* − 4 marks; Explanation − 6 marks b) Discuss the method for velocity measurement of a fluid using laser. (6) LDA method diagram -3 marks; explanation -3 marks c) Describe the use of lasers for the trimming of materials. **(4)** Explanation - 4marks a) How lasers can be utilized for the following applications? (10)i. Heating ii. Welding *Heating – 5 marks; Welding – 5 marks* b) List different applications of Laser in Dermatology? (5) *Applications – 5 marks* c) Briefly explain Laser diagnosis. (5)

G	Pages 3		
		Explanation – 5 marks	O
9	a)	Explain the interaction between Lasers and Tissues.	(8)
		Explanation with proper diagrams - 8 marks	
	b)	Discuss the application of lasers in Oncology.	(7)
		Explanation with proper diagrams - 7 marks	
	c)	Explain the application of lasers in the removal of tumours of vocal chords.	(5)
		Explanation with proper diagrams - 5 marks	
		de de de de	

