Reg No.:_____

Name:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SEVENTH SEMESTER B.TECH DEGREE EXAMINATION(R&S), DECEMBER 2019

Course Code: EC403

Course Name: MICROWAVE & RADAR ENGINEERING

Max. Marks: 100

Duration: 3 Hours

PART A

		Answer any two full questions, each carries 15 marks.	Marks
1	a)	Derive the resonant frequency of a rectangular cavity resonator.	(4)
	b)	Determine the resonant frequency of an air filled rectangular cavity operating in	(3)
		the dominant mode with dimensions as $a=4cm$, $b=5cm$ and $d=6cm$.	
	c)	Assuming pi mode of oscillations explain how a magnetron can sustain its	(8)
		oscillations using the cross field.	
2	a)	With the help of Applegate diagram describe the bunching process in a two	(8)
		cavity klystron amplifier and derive the bunching parameter.	
	b)	A reflex klystron operates under the following conditions:	(7)
		V_0 =500V, R_{sh} =10K Ω , f_r = 8 GHz, L =1 mm, e/m = 1.759 x 10 ¹¹ (MKS system)	
		The tube is oscillating at f_r at the peak of the $n = 2$ or $1\frac{3}{4}$ mode. Assume that the	
		transit time through the gap and beam loading to be neglected. Determine:-	
		1. The value of the repeller voltage Vr.	
		2. The direct current necessary to give a microwave gap voltage of 200 V.	
		3. The electronic efficiency under this condition.	
3	a)	Explain the electronic admittance of the gap in the case of reflex klystron. With	(7)
		admittance diagram explain the condition required for oscillation in a reflex	
		Klystron.	
	b)	Given the parameters of a two cavity klystron amplifier:	(8)
		Beam Voltage = $1000V$,	
		Beam current = 50 mA,	
		Operating frequency = 10 GHz	
		Gap spacing=1mm,	
		Spacing between two cavities $= 5$ cm,	
		$R_0 = 40K\Omega$, $R_s = 30K\Omega$	
		Determine:	
		1. Input signal to generate maximum output voltage.	
		2. Voltage gain.	

3. Efficiency.

B

G192025

PART B

Answer any two full questions, each carries 15 marks.

4	a)	With neat diagrams explain any two methods to measure impedance at	(8)
		microwave frequencies.	
	b)	Explain with figure a two hole directional coupler and derive its S matrix.	(7)
5	a)	With neat diagram explain the operation of a travelling wave tube.	(7)
	b)	Discuss the constructional features of magic tees and derive its S Matrix. Why	(8)
		are they called so?	
6	a)	Derive the expression of axial electric field of Helix TWT.	(8)
	b)	With a schematic describe the operation of a four port circulator. Obtain the	(7)
		simplified S matrix of a perfectly matched, lossless four port circulator.	
		PART C	

PART C

Answer any two full questions, each carries 20 marks.

7	a)	What is tunnelling? Explain the operation of a tunnel diode with aid of energy	(10)
		band diagram.	
	b)	Derive Radar range equation.	(5)
	c)	A simple MTI delay line canceller is an example of time domain filter. Explain	(5)
		Why?	
8	a)	Discuss the various limitations of microwave transistors.	(10)
	b)	Explain the more commonly used radar displays.	(5)
	c)	Explain how the noise figure of a radar receiver is monitored.	(5)
9	a)	Explain with neat diagram, the working of CW radar with non zero IF.	(10)
	b)	Explain with the help of figures different modes of operation of Gunn diodes.	(10)
